Acetonitrile and propionitrile exchange at palladium(II) and platinum(II)[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Ola F. Wendt, Nils-Fredrik K. Kaiser and Lars I. Elding


Abstract

Ligand exchange at square-planar [Pd(MeCN)4]2+ and [Pd(EtCN)4]2+ has been studied by 1H NMR line broadening and at [Pt(MeCN)4]2+ and [Pt(EtCN)4]2+ by isotopic labelling using 1H NMR spectroscopy in deuteriated nitromethane. Exchange takes place via two-term rate laws Rex/4 = (k1 + k2[RCN])cM with well defined k1 paths. Rate constants per co-ordination site k1298/s–1, k2298/kg mol–1 s–1 are 6.9 ± 1.6, 34 ± 3; 0.59 ± 0.12, 34 ± 3; 10.7 ± 1.8, 35 ± 4; (5.1 ± 2.3) × 10–6, (2.8 ± 0.2) × 10–5 and (5.5 ± 1.0) × 10–6, (3.3 ± 0.2) × 10–5 for [Pd(MeCN)4][CF3SO3]2, [Pd(MeCN)4][BF4]2, [Pd(EtCN)4][CF3SO3]2, [Pt(MeCN)4][CF3SO3]2 and [Pt(EtCN)4][CF3SO3]2, respectively. For [Pd(MeCN)4]2+ the k1 path is much larger for triflate than for tetrafluoroborate as counter ion. Changing the tetrafluoroborate concentration has no effect on the exchange rate of acetonitrile at [Pd(MeCN)4]2+. In this case the k1 path is ascribed to an attack by solvent at the metal centre. For triflate saturation kinetics is observed. This can be rationalized in terms of ion-pair formation followed by reversible intramolecular exchange of nitrile for triflate within the ion pair, with an equilibrium constant Kip300 = 8 ± 2 kg mol–1 and a rate constant k300 = 12.5 ± 1.3 s–1. All activation entropies are negative, indicating associative activation. A new, simple one-step synthesis of the substrate complexes as their triflate salts, using [M(acac)2] (acac = acetylacetonate) as starting material, and of [Pd(MeCN)4][BF4]2 using palladium(II) acetate, is described.


References

  1. Ö. Gröning, T. Drakenberg and L. I. Elding, Inorg. Chem., 1982, 21, 1820 CrossRef CAS .
  2. J. J. Pesek and W. R. Mason, Inorg. Chem., 1983, 22, 2958 CrossRef CAS .
  3. L. Helm, L. I. Elding and A. E. Merbach, Helv. Chim. Acta, 1984, 67, 1453 CrossRef CAS .
  4. L. Helm, L. I. Elding and A. E. Merbach, Inorg. Chem., 1985, 24, 1719 CrossRef CAS .
  5. Y. Ducommun, L. Helm, A. E. Merbach, B. Hellquist and L. I. Elding, Inorg. Chem., 1989, 28, 377 CrossRef CAS .
  6. B. Brønnum, H. S. Johansen and L. H. Skibsted, Acta Chem. Scand., 1989, 43, 975 .
  7. U. Frey, S. Elmroth, B. Moullet, L. I. Elding and A. E. Merbach, Inorg. Chem., 1991, 30, 5033 CrossRef CAS .
  8. N. Hallinan, V. Besançon, M. Forster, G. Elbaze, Y. Ducommun and A. E. Merbach, Inorg. Chem., 1991, 30, 1112 CrossRef CAS .
  9. V. Y. Kukushkin, Å. Oskarsson and L. I. Elding, Inorg. Synth., 1996, 31, 279 .
  10. G. Alibrandi, R. Romeo, L. M. Scolaro and M. L. Tobe, Inorg. Chem., 1992, 31, 5061 CrossRef CAS .
  11. T. Yagyu, S. Aizawa, K. Hatano and S. Funahashi, Bull. Chem. Soc. Jpn., 1996, 69, 1961 CAS .
  12. B. Heyn, B. Hipler, G. Kreisel, H. Schreer and D. Walther, Anorganische Synthesechemie, Springer, Berlin, 1986, p.129 Search PubMed .
  13. S. Okeya and S. Kawaguchi, Inorg. Synth., 1980, 20, 65 .
  14. H. Kobler, R. Munz, G. Al Gasser and G. Simchen, Liebigs Ann. Chem., 1978, 1937 Search PubMed .
  15. R. R. Thomas and A. Sen, Inorg. Synth., 1990, 28, 63 CAS .
  16. H. Kobler, K.-H. Schuster and G. Simchen, Liebigs Ann. Chem., 1978, 1946 Search PubMed .
  17. D. S. Stephenson and G. Binsch, QCPE, 1978, 11, 365 Search PubMed .
  18. R. M. Fuoss, J. Am. Chem. Soc., 1958, 80, 5059 CrossRef CAS .
  19. J. H. Espenson, Chemical Kinetics and Reaction Mechanisms, McGraw-Hill, New York, 2nd edn., 1995, p. 56 .
  20. R. G. Pearson, H. B. Gray and F. Basolo, J. Am. Chem. Soc., 1960, 82, 787 CAS .
  21. O. P. Anderson and A. B. Packard, Inorg. Chem., 1979, 18, 1129 CrossRef CAS .
  22. P. Svensson, K. Lövquist, V. Y. Kukushkin and Å. Oskarsson, Acta Chem. Scand., 1995, 49, 72 CrossRef CAS .
Click here to see how this site uses Cookies. View our privacy policy here.