Pulse-radiolysis studies on the oxidised form of the multicopper enzyme ascorbate oxidase: evidence for two intramolecular electron-transfer steps

(Note: The full text of this document is currently only available in the PDF Version )

Panayotis Kyritsis, Albrecht Messerschmidt, Robert Huber, G. Arthur Salmon and A. Geoffrey Sykes


Two intramolecular electron-transfer steps have been identified in pulse-radiolysis studies on the multicopper enzyme ascorbate oxidase, which has four Cu atoms in the catalytically active monomer form. The enzyme was initially in the fully oxidised CuII4 state. Pulse radiolysis was carried out at 19 °C, pH 7.0 (40 mM phosphate), l= 0.100 M, in the first instance with formate to generate CO2˙ as the only (reducing) radical present. When in addition appropriate amounts of methyl viologen (1,1′-dimethyl-4,4′-bipyridinium, dmbipy2+), deazaflavin, or lumiflavin were present the CO2˙ was rapidly converted into CO2 with concomitant formation of the corresponding radical form (e.g. dmbipy˙+) as the only reactive species. Reactions of all four radicals with ascorbate oxidase (reactant in excess) give a metastable type 1 copper reduced product. Contrary to earlier reports two intramolecular electron-transfer steps k1 and k2 follow in which the colour of the type 1 site is restored. Both are independent of the radical type used. Thus the first stage is assigned as electron transfer from the type 1 CuI to the trinuclear combined type 3/type 2 site. Rate constants k1 and k2/s–1 are for CO2˙(120, 2.0), dmbipy˙+(127, 2.3), deazaflavin (121, 2.5) and lumiflavin (97, 2.4). Mechanistic assignments for the two stages are considered, and an apparent disagreement with a previous study is explained.


References

  1. J. A. Fee, Struct. Bonding (Berlin), 1975, 23, 1 CAS.
  2. P. M. H. Kroneck, F. A. Armstrong, H. Merkle and A. Marchesini, in Advances in Chemistry Series No. 200, Ascorbic Acid: Chemistry, Metabolism and Uses, eds. P. A. Seib and B. M. Tolbert, American Chemical Society, Washington, DC, 1982, pp. 223–248. Search PubMed.
  3. B. G. Malmström, Annu. Rev. Biochem., 1982, 51, 21 CrossRef.
  4. (a) J. L. Cole, P. A. Clark and E. I. Solomon, J. Am. Chem. Soc., 1990, 112, 9534 CrossRef CAS; (b) J. L. Cole, D. P. Ballu and E. I. Solomon, J. Am. Chem. Soc., 1991, 113, 8544 CrossRef CAS; (c) J. L. Cole, L. Avigliano, L. Morpurgo and E. I. Solomon, J. Am. Chem. Soc., 1991, 113, 9080 CrossRef CAS; (d) P. A. Clark and E. I. Solomon, J. Am. Chem. Soc., 1992, 114, 1108 CrossRef CAS.
  5. (a) J. C. Severns and D. R. McMillin, Biochemistry, 1990, 29, 8592 CrossRef CAS; (b) J.-B. Li, D. R. McMillin and W. E. Antholine, J. Am. Chem. Soc., 1992, 114, 725 CrossRef CAS.
  6. See reviews, in Copper Proteins and Copper Enzymes, ed. R. Lontie, CRC Press, Boca Raton, FL, vol. 3. Search PubMed.
  7. (a) A. Messerschmidt, A. Rossi, R. Ladenstein, R. Huber, M. Bolognesi, G. Gatti, A. Marchesini, R. Petruzzelli and A. Finazzi-Agro, J. Mol. Biol., 1989, 206, 513 CrossRef CAS; (b) A. Messerschmidt and R. Huber, Eur. J. Biochem., 1990, 187, 341 CAS; (c) A. Messerschmidt, R. Ladenstein, R. Huber, M. Bolognesi, L. Avigliano, R. Petruzzelli, A. Rossi and A. Finazzi-Agro, J. Mol. Biol., 1992, 224, 179 CrossRef CAS.
  8. (a) R. A. Marcus and N. Sutin, Biochim. Biophys. Acta, 1985, 811, 265 CAS; (b) M. J. Therein, J. Chang, A. L. Raphael, B. E. Bowler and H. B. Gray, Struct Bonding (Berlin), 1991, 75, 109 CAS; (c) D. N. Beratan, J. N. Onuchic and H. B. Gray, in Metal Ions in Biological Systems, eds. H. Sigel and A. Sigel, Marcel Dekker, New York, 1991, vol. 27, pp. 97–127. Search PubMed.
  9. T. E. Meyer, A. Marchesini, M. A. Cusanovich and G. Tollin, Biochemistry, 1991, 30, 4619 CrossRef CAS.
  10. (a) H. Beinert, J. Inorg. Biochem., 1991, 44, 173 CrossRef CAS; (b) O. Farver and I. Pecht, Mol. Cryst. Liq. Cryst., 1991, 194, 215 CAS; (c) O. Farver and I. Pecht, FASEB J, 1991, 5, 2554 Search PubMed.
  11. A. Marchesini and P. M. H. Kroneck, Eur. J. Biochem., 1979, 101, 65 CAS.
  12. E. M. Fielden, in The Study of Fast Processes and Transient Species by Electron Pulse Radiolysis, eds. J. H. Baxendale and F. Busi, Riedel, Dordrecht, 1982, p. 58. Search PubMed.
  13. G. V. Buxton, Adv. Inorg. Bioinorg. Mech., 1984, 3, 131 Search PubMed.
  14. F. Wilkinson, University of Leeds, Cookridge Radiation Research Centre, Internal report, 1988..
  15. M. Breitenkamp, A. Henglein and J. Lilie, Ber. Bunsenges. Phys. Chem., 1977, 81, 556 CAS.
  16. K. Tsukahara and R. G. Wilkins, J. Am. Chem. Soc., 1985, 107, 2632 CrossRef CAS.
  17. V. Massey and P. Hemmerich, J. Biol. Chem., 1977, 252, 5612 CAS; V. Massey and P. Hemmerich, Biochemistry, 1978, 17, 9 CrossRef CAS.
  18. G. Tollin, T. E. Meyer, G. Cheddar, E. D. Getzoff and M. A. Cusanovich, Biochemistry, 1986, 25, 3363 CrossRef CAS.
  19. B. R. M. Reinhammer, Biochim. Biophys. Acta, 1972, 275, 245; B. R. M. Reinhammer, Copper Proteins and Copper Enzymes, ed. R. Lontie, CRC Press, Boca Ratan, FL, vol. 3, pp 1–35. Search PubMed.
  20. A. Messerschmidt, unpublished work..
  21. O. Farver and I. Pecht, Proc. Natl. Acad. Sci. USA, 1989, 86, 6968 CAS; O. Farver and I. Pecht, J. Am. Chem. Soc., 1992, 114, 5764 CrossRef CAS.
  22. C. C. Moser, J. M. Keske, K. Warncke, R. S. Farid and P. L. Dutton, Nature (London), 1992, 235, 796 CrossRef CAS.
  23. J. N. Onuchic and D. N. Beratan, J. Chem. Phys., 1990, 92, 722 CrossRef; D. N. Beratan, J. N. Onuchic, J. N. Betts, B. Bowler and H. B. Gray, J. Am. Chem. Soc., 1990, 112, 7915 CrossRef CAS.
  24. A. G. Sykes, Struct. Bonding (Berlin), 1991, 75, 175 CAS.
  25. S. He, S. Modi, D. S. Bendall and J. C. Gray, EMBO J, 1991, 10, 4011 CAS.
  26. B. M. Malmström, Chem. Rev., 1990, 90, 1247 CrossRef; H. B. Gray and B. M. Malmström, Biochemistry, 1989, 28, 7499 CrossRef CAS.