Skip to main content
Log in

Prospects for a bio-based succinate industry

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Bio-based succinate is receiving increasing attention as a potential intermediary feedstock for replacing a large petrochemical-based bulk chemical market. The prospective economical and environmental benefits of a bio-based succinate industry have motivated research and development of succinate-producing organisms. Bio-based succinate is still faced with the challenge of becoming cost competitive against petrochemical-based alternatives. High succinate concentrations must be produced at high rates, with little or no by-products to most efficiently use substrates and to simplify purification procedures. Herein are described the current prospects for a bio-based succinate industry, with emphasis on specific bacteria that show the greatest promise for industrial succinate production. The succinate-producing characteristics and the metabolic pathway used by each bacterial species are described, and the advantages and disadvantages of each bacterial system are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anonymous (2002) BASF increases prices for 1,4-butanediol and derivatives. Chem Mark Rep 262:8

    Google Scholar 

  • Anonymous (2004) Present status and projection of γ-butyrolactone. China Chem Rep 15:23–25

    Google Scholar 

  • Anonymous (2005a) 1,4-Butanediol. Chem Mark Rep 268:42

    Google Scholar 

  • Anonymous (2005b) Lanxess ups maleic anhydride capacity. Chem Mark Rep 267:4

    Google Scholar 

  • Anonymous (2005c) Prices & people. Chem Mark Rep 267:16–18

    Google Scholar 

  • Barnes EM Jr, Kaback HR (1971) Mechanisms of active transport in isolated membrane vesicles. I. The site of energy coupling between d-lactic dehydrogenase and β-galactoside transport in Escherichia coli membrane vesicles. J Biol Chem 246:5518–5522

    CAS  PubMed  Google Scholar 

  • Berglund KA, Elankovan P, Glassner DA (1991) Carboxylic acid purification and crystallization process. US Patent 5,034,105

  • Berglund KA, Yedur S, Dunuwila DD (1999) Succinic acid production and purification. US Patent 5,958,744

  • Brown R (2005) Housing sector boosts maleic anhydride. Chem Mark Rep 267:24

    Google Scholar 

  • Chang J (2006) Huntsman picks La. site. Chem Mark Rep 269:4

    Google Scholar 

  • Chartterjee R, Millard CS, Champion K, Clark DP, Donnelly MI (2001) Mutation of the ptsG gene results in increased production of succinate in fermentation of glucose by Escherichia coli. Appl Environ Microbiol 67:148–154

    Google Scholar 

  • Cox SJ, Shalel Levanon S, Sanchez AM, Lin H, Peercy B, Bennett GN, San KY (2006) Development of a metabolic network design and optimization framework incorporating implementation constraints: a succinate production case study. Metab Eng 8:46–57

    CAS  PubMed  Google Scholar 

  • Dake SB, Gholap RV, Chaudhari RV (1987) Carbonylation of 1,4-butanediol diacetate using rhodium complex catalyst: a kinetic study. Ind Eng Chem Res 26:1513–1518

    CAS  Google Scholar 

  • Datta R, Glassner DA, Jain MK, Vick Roy JR (1992) Fermentation and purification process for succinic acid. US Patent 5,168,055

  • Deng Y, Ma Z, Wang K, Chen J (1999) Clean synthesis of adipic acid by direct oxidation of cyclohexene with H2O2 over peroxytungstate-organic complex catalysts. Green Chem 275:275–276

    Google Scholar 

  • Dym O, Pratt EA, Ho C, Eisenberg D (2000) The crystal structure of d-lactate dehydrogenase, a peripheral membrane respiratory enzyme. Proc Natl Acad Sci USA 97:9413–9418

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glassner DA, Datta R (1992) Process for the production and purification of succinic acid. US Patent 5,143,834

  • Gokarn RR, Evans JD, Walker JR, Martin SA, Eiteman MA, Altman E (2001) The physiological effects and metabolic alterations caused by the expression of Rhizobium etli pyruvate carboxylase in Escherichia coli. Appl Microbiol Biotechnol 56:188–195

    CAS  PubMed  Google Scholar 

  • Gross RA, Kalra B (2002) Biodegradable polymers for the environment. Science 297:803–807

    CAS  PubMed  Google Scholar 

  • Guettler MV, Jain MK (1996) Method for making succinic acid, Anaerobiospirillum succiniciproducens variants for use in process and methods for obtaining variants. US Patent 5,521,075

  • Guettler MV, Jain MK, Rumler D (1996a) Method for making succinic acid, bacterial variants for use in the process, and methods for obtaining variants. US Patent 5,573,931

  • Guettler MV, Jain MK, Soni BK (1996b) Process for making succinic acid, microorganisms for use in the process and methods of obtaining the microorganisms. US Patent 5,504,004

  • Guettler MV, Rumler D, Jain MK (1999) Actinobacillus succinogenes sp. nov., a novel succinic-acid-producing strain from the bovine rumen. Int J Syst Bacteriol 49:207–216

    CAS  PubMed  Google Scholar 

  • Hong SH, Lee SY (2001) Metabolic flux analysis for succinic acid production by recombinant Escherichia coli with amplified malic enzyme activity. Biotechnol Bioeng 74:89–95

    CAS  PubMed  Google Scholar 

  • Hong SH, Kim JS, Lee SY, In YH, Choi SS, Rih JK, Kim CH, Jeong H, Hur CG, Kim JJ (2004) The genome sequence of the capnophilic rumen bacterium Mannheimia succiniciproducens. Nat Biotechnol 22:1275–1281

    CAS  PubMed  Google Scholar 

  • Huh YS, Hong YK, Hong WH, Chang HN (2004) Selective extraction of acetic acid from the fermentation broth produced by Mannheimia succiniciproducens. Biotechnol Lett 26:1581–1584

    CAS  PubMed  Google Scholar 

  • Huh YS, Jun Y-S, Hong YK, Song H, Lee SY, Hong WH (2006) Effective purification of succinic acid from fermentation broth produced by Mannheimia succiniciproducens. Process Biochem 41:1461–1465

    CAS  Google Scholar 

  • Inui M, Murakami S, Okino S, Kawaguchi H, Vertes AA, Yukawa H (2004) Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J Mol Microbiol Biotechnol 7:182–196

    CAS  PubMed  Google Scholar 

  • Kawaguchi H, Vertes AA, Okino S, Inui M, Yukawa H (2006) Engineering of a xylose metabolic pathway in Corynebacterium glutamicum. Appl Environ Microbiol 72:3418–3428

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim P, Laivenieks M, Vieille C, Zeikus JG (2004a) Effect of overexpression of Actinobacillus succinogenes phosphoenolpyruvate carboxykinase on succinate production in Escherichia coli. Appl Environ Microbiol 70:1238–1241

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim P, Laivenieks M, McKinlay J, Vieille C, Zeikus JG (2004b) Construction of a shuttle vector for the overexpression of recombinant proteins in Actinobacillus succinogenes. Plasmid 51:108–115

    CAS  PubMed  Google Scholar 

  • Kwon YD, Lee SY, Kim P (2006) Influence of gluconeogenic phosphoenolpyruvate carboxykinase (PCK) expression on succinic acid fermentation in Escherichia coli under high bicarbonate condition. J Microbiol Biotechnol 16:1448–1452

    CAS  Google Scholar 

  • Lee PC, Lee WG, Kwon S, Lee SY, Chang HN (2000) Batch and continuous cultivation of Anaerobiospirillum succiniciproducens for the production of succinic acid from whey. Appl Microbiol Biotechnol 54:23–27

    CAS  PubMed  Google Scholar 

  • Lee PC, Lee SY, Hong SH, Chang HN (2002) Isolation and characterization of a new succinic acid-producing bacterium, Mannheimia succiniciproducens MBEL55E, from bovine rumen. Appl Microbiol Biotechnol 58:663–668

    CAS  PubMed  Google Scholar 

  • Lee PC, Lee SY, Hong SH, Chang HN (2003a) Batch and continuous cultures of Mannheimia succiniciproducens MBEL55E for the production of succinic acid from whey. Bioprocess Biosyst Eng 26:63–67

    CAS  PubMed  Google Scholar 

  • Lee PC, Lee SY, Hong SH, Chang HN, Park SC (2003b) Biological conversion of wood hydrolysate to succinic acid by Anaerobiospirillum succiniciproducens. Biotechnol Lett 25:111–114

    CAS  PubMed  Google Scholar 

  • Lee JW, Lee SY, Song H, Yoo JS (2006a) The proteome of Mannheimia succiniciproducens, a capnophilic rumen bacterium. Proteomics 6:3550–3566

    CAS  PubMed  Google Scholar 

  • Lee SJ, Song H, Lee SY (2006b) Genome-based metabolic engineering of Mannheimia succiniciproducens for succinic acid production. Appl Environ Microbiol 72:1939–1948

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin H, Vadali RV, Bennett GN, San KY (2004) Increasing the acetyl-CoA pool in the presence of overexpressed phosphoenolpyruvate carboxylase or pyruvate carboxylase enhances succinate production in Escherichia coli. Biotechnol Prog 20:1599–1604

    CAS  PubMed  Google Scholar 

  • Lin H, Bennett GN, San KY (2005a) Fed-batch culture of a metabolically engineered Escherichia coli strain designed for high-level succinate production and yield under aerobic conditions. Biotechnol Bioeng 90:775–779

    CAS  PubMed  Google Scholar 

  • Lin H, Bennett GN, San KY (2005b) Metabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yield. Metab Eng 7:116–127

    CAS  PubMed  Google Scholar 

  • Lin H, San KY, Bennett GN (2005c) Effect of Sorghum vulgare phosphoenolpyruvate carboxylase and Lactococcus lactis pyruvate carboxylase coexpression on succinate production in mutant strains of Escherichia coli. Appl Microbiol Biotechnol 67:515–523

    CAS  PubMed  Google Scholar 

  • Lynd LR, Wyman C, Laser M, Johnson D, Landucci R (2002). Strategic biorefinery analysis: analysis of biorefineries. National Renewable Energy Laboratory, Golden, CO

  • Macy JM, Ljungdahl LG, Gottschalk G (1978) Pathway of succinate and propionate formation in Bacteroides fragilis. J Bacteriol 134:84–91

    CAS  PubMed  PubMed Central  Google Scholar 

  • McKinlay JB, Zeikus JG, Vieille C (2005) Insights into Actinobacillus succinogenes fermentative metabolism in a chemically defined growth medium. Appl Environ Microbiol 71:6651–6656

    CAS  PubMed  PubMed Central  Google Scholar 

  • McKinlay JB, Shachar-Hill Y, Zeikus JG, Vieille C (2007) Determining Actinobacillus succinogenes metabolic pathways and fluxes by NMR and GC-MS analyses of 13C-labeled metabolic product isotopomers. Metab Eng 9:177–192

    CAS  PubMed  Google Scholar 

  • Millard CS, Chao Y-P, Liao JC, Donnelly MI (1996) Enhanced production of succinic acid by overexpression of phosphoenolpyruvate carboxylase in Escherichia coli. Appl Environ Microbiol 62:1808–1810

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller EN, Ingram LO (2007) Combined effect of betaine and trehalose on osmotic tolerance of Escherichia coli in mineral salts medium. Biotechnol Lett 29:213–217

    CAS  PubMed  Google Scholar 

  • Nghiem NP, Davison BH, Suttle BE, Richardson GR (1997) Production of succinic acid by Anaerobiospirillum succiniciproducens. Appl Biochem Biotechnol 63–65:565–576

    PubMed  Google Scholar 

  • Nghiem N, Donnelly M, Millard CS, Stols L (1999) Method for the production of dicarboxylic acids. US Patent 5,869,301

  • Okino S, Inui M, Yukawa H (2005) Production of organic acids by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 68:475–480

    CAS  PubMed  Google Scholar 

  • Park DH, Zeikus JG (1999) Utilization of electrically reduced neutral red by Actinobacillus succinogenes: physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J Bacteriol 181:2403–2410

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park DH, Laivenieks M, Guettler MV, Jain MK, Zeikus JG (1999) Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production. Appl Environ Microbiol 65:2912–2917

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paster M, Pellegrino JL, Carole TM (2003). Industrial bioproducts: today and tomorrow. Energetics, Incorporated, Columbia, MD

  • Petersen S, de Graaf AA, Eggeling L, Mollney M, Wiechert W, Sahm H (2000) In vivo quantification of parallel and bidirectional fluxes in the anaplerosis of Corynebacterium glutamicum. J Biol Chem 275:35932–35941

    CAS  PubMed  Google Scholar 

  • Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Mockel B, Sahm H, Eikmanns BJ (2001) Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum. J Mol Microbiol Biotechnol 3:295–300

    CAS  PubMed  Google Scholar 

  • Samuelov NS, Lamed R, Lowe S, Zeikus JG (1991) Influence of CO2-HCO3 levels and pH on growth, succinate production, and enzyme activities of Anaerobiospirillum succiniciproducens. Appl Environ Microbiol 57:3013–3019

    CAS  PubMed  PubMed Central  Google Scholar 

  • Samuelov NS, Datta R, Jain MK, Zeikus JG (1999) Whey fermentation by Anaerobiospirillum succiniciproducens for production of a succinate-based animal feed additive. Appl Environ Microbiol 65:2260–2263

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez AM, Bennett GN, San KY (2005) Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity. Metab Eng 7:229–239

    CAS  PubMed  Google Scholar 

  • Scardovi V, Chiappini MG (1966) Studies in rumen bacteriology. V. Carboxylation of phosphoenolpyruvate in some rumen bacterial strains and in the cell-free extract of the total rumen flora. Ann Microbiol Enzymol 16:119–127

    CAS  Google Scholar 

  • Scheifinger CC, Wolin MJ (1973) Propionate formation from cellulose and soluble sugars by combined cultures of Bacteroides succinogenes and Selenomonas ruminantium. Appl Environ Microbiol 26:789–795

    CAS  Google Scholar 

  • Secchi C, Cantarelli VV, de Souza Pereira F, Wolf HHC, Brodt TCZ, Amaro MCO, Inamine E (2005) Fatal bacteremia due to Anaerobiospirillum succiniciproducens: first description in Brazil. Braz J Infect Dis 9:169–172

    PubMed  Google Scholar 

  • Song H, Lee SY (2006) Production of succinic acid by bacterial fermentation. Enzyme Microb Technol 39:353–361

    Google Scholar 

  • Stephanopoulos G, Aristidou AA, Nielsen J (1998) Metabolic engineering: principles and methodologies. Academic, New York

    Google Scholar 

  • Stols L, Donnelly MI (1997) Production of succinic acid through overexpression of NAD+-dependent malic enzyme in an Escherichia coli mutant. Appl Environ Microbiol 63:2695–2701

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tilton H (2003) Prices & people. Chem Mark Rep 264:20–22

    Google Scholar 

  • Urbance SE, Pometto AL, 3rd, Dispirito AA, Demirci A (2003) Medium evaluation and plastic composite support ingredient selection for biofilm formation and succinic acid production by Actinobacillus succinogenes. Food Biotechnol 17:53–65

    CAS  Google Scholar 

  • Urbance SE, Pometto AL, 3rd, Dispirito AA, Denli Y (2004) Evaluation of succinic acid continuous and repeat-batch biofilm fermentation by Actinobacillus succinogenes using plastic composite support bioreactors. Appl Microbiol Biotechnol 65:664–670

    CAS  PubMed  Google Scholar 

  • van der Werf MJ, Guettler MV, Jain MK, Zeikus JG (1997) Environmental and physiological factors affecting the succinate product ratio during carbohydrate fermentation by Actinobacillus sp. 130Z. Arch Microbiol 167:332–342

    PubMed  Google Scholar 

  • van Gylswyk NO (1995) Succiniclasticum ruminis gen. nov., sp. nov., a ruminal bacterium convering succinate to propionate as the sole energy-yielding mechanism. Int J Syst Bacteriol 45:297–300

    PubMed  Google Scholar 

  • Vemuri GN, Eiteman MA, Altman E (2002a) Succinate production in dual-phase Escherichia coli fermentations depends on the time of transition from aerobic to anaerobic conditions. J Ind Microbiol Biotechnol 28:325–332

    CAS  PubMed  Google Scholar 

  • Vemuri GN, Eiteman MA, Altman E (2002b) Effects of growth mode and pyruvate carboxylase on succinic acid production by metabolically engineered strains of Escherichia coli. Appl Environ Microbiol 68:1715–1727

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wendisch VF, Bott M, Eikmanns BJ (2006a) Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids. Curr Opin Microbiol 9:268–274

    CAS  PubMed  Google Scholar 

  • Wendisch VF, Bott M, Kalinowski J, Oldiges M, Wiechert W (2006b) Emerging Corynebacterium glutamicum systems biology. J Biotechnol 124:74–92

    CAS  PubMed  Google Scholar 

  • Wilke D (1995) What should and what can biotechnology contribute to chemical bulk production? FEMS Microbiol Rev 16:89–100

    CAS  Google Scholar 

  • Wilke D (1999) Chemicals from biotechnology: molecular plant genetics will challenge the chemical and fermentation industry. Appl Microbiol Biotechnol 52:135–145

    CAS  PubMed  Google Scholar 

  • Willke T, Vorlop K-D (2004) Industrial bioconversion of renewable resources as an alternative to conventional chemistry. Appl Microbiol Biotechnol 66:131–142

    CAS  PubMed  Google Scholar 

  • Wood A (2004) Bioprocessing. Chem Week 166:15–17

    Google Scholar 

  • Xudong Z (2005) Supply shortage of adipic acid. China Chem Rep 16:18–19

    Google Scholar 

  • Yoo JY, Zeikus JG (1996) Modulation of phosphoenolpyruvate metabolism of Anaerobiospirillum succiniciproducens ATCC 29305. J Microbiol Biotechnol 6:43–49

    CAS  Google Scholar 

  • Zeikus JG, Jain MK, Elankovan P (1999) Biotechnology of succinic acid production and markets for derived industrial products. Appl Environ Microbiol 51:545–552

    CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Drs. Michael Bagdasarian, John Breznak, John Ohlrogge, C. Adinarayana Reddy, and Yair Shachar-Hill for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Gregory Zeikus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McKinlay, J.B., Vieille, C. & Zeikus, J.G. Prospects for a bio-based succinate industry. Appl Microbiol Biotechnol 76, 727–740 (2007). https://doi.org/10.1007/s00253-007-1057-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-1057-y

Keywords

Navigation