meso-Tetraphenylporphyrin with a π-system extended by fusion with anthraquinone†

Mikhail A. Filatov,*a,b Ernesta Heinrich,a Katharina Landfester,a and Stanislav Baluschev,a,c,d

Fusion with a 9,10-anthraquinone moiety was achieved to extend porphyrin’s π-system. A bridged dihydroisoindole derivative was used to prepare the corresponding meso-tetraanthraquinonoporphyrin (Ph₄TAQP) via a thermal retro-Diels–Alder reaction. The basic optical properties of the prepared new anthraquinonoporphyrin and its complexes with Zn and Pd were studied.

Introduction

Porphyrins with aromatic rings fused to the tetrapyrrolic core, so-called π-extended porphyrins, have attracted much attention in recent years as materials for numerous applications—from biomedical sensing and imaging to organic optoelectronics.1 Metallated π-extended porphyrins are particularly important for the process of triplet–triplet annihilation photon energy upconversion (TTA-UC).2 A variety of π-extended porphyrins have been synthesized by fusing benzene,3 naphthalene,4 pyrene,5 azulene,6 anthracene,7 corannulene,8 and other aromatic moieties to the meso- and β-positions of the macrocycle. Fusion of aromatic rings to all four pyrrole residues results in particularly strong effects on the π-system, leading to enhanced light absorption and efficient emission in the near-infrared (IR-A) region of the spectrum.9

First reported by Krautler and co-workers, a conjugation of naphthoquinone to a porphyrin has a remarkable effect on its properties. Particularly, resulting materials exhibit optical properties which resemble those of nanoscopic carbon materials with extended π-systems, such as graphene, graphite, and nanotubes.10 Theoretical studies of tetranaphthoquinonoporphyrin (TNQP) revealed that introduction of the carbonyl groups into the π-system results in strong alternations of bonds and a transformation of the conjugation from “benzene-type” to “butadiene-type”. Unidirectional photon-induced current associated with p–π conjugation enables light-harvesting efficiency of this kind of molecular skeleton to reach 90% in the range of 300–800 nm.11 This makes TNQPs attractive materials for panchromatic dye-sensitized solar cells. Moreover, porphyrins fused with quinone moieties are expected to exhibit interesting electrochemical properties, since they are able to accept a load of at least 8 electrons per molecule. Such materials clearly promise to expand the range of multi-electron transfer (MET) catalysts—compounds having the ability to accommodate and transfer multiple electrons to reaction substrates at one time.12

Despite promising properties, tetraquinonoporphyrins (TQP) are almost unknown because the available synthetic methods in the field of π-extended porphyrins chemistry have been very limited until recently. To the best of our knowledge, the only representative of a porphyrin directly fused with four quinone fragments was obtained by Krautler and co-workers, using the [4 + 2] cycloaddition reaction between β,β′-tetrasulfolo-nephyrin13 and an excess of benzoquinone.10

Herein we report a synthetic approach to meso-tetraphenyl-tetraanthraquinonoporphyrin (Ph₄TAQP) based on a bridged dihydroisoindole precursor. In addition we describe the basic optical properties of the newly synthesized Ph₄TAQP free-base and its metal complexes.

Results and discussion

Due to the instability of isoindole and its π-expanded analogues,14 the formation of a fully conjugated π-system has to be performed after the formation of the porphyrin macrocycle. So far, two general synthetic methods have been employed to construct the extended porphyrin architecture: oxidative aromatization15 and thermal retro-Diels–Alder reaction.16

As is shown in Scheme 1, the use of the oxidative aromatization approach for the synthesis of tetraanthraquinono-
porphyrin requires the corresponding dihydroisoindole derivative (Scheme 1, route A). According to the thermal retro-Diels–Alder approach, the target molecule can be prepared from bicyclo[2.2.2]octadiene-annelated porphyrin which can undergo thermal extrusion of ethylene (route B).

A pyrrole derivative containing a naphthoquinone moiety represents a direct precursor for the synthesis of TAQP through route A. We first examined the possibility to apply directly 1,4,4a,9a-tetrahydro-anthraquinone 1 (Scheme 2) for the synthesis of the corresponding pyrrole from vinyl or allyl sulphones via a Barton–Zard reaction.17 Treatment of 1 with PhSCl, followed by oxidation with Oxone led to the chlorosulione 2. Further reaction with DBU yielded 2-phenylsulfonylanthraquinone 3, rather than the expected vinyl sulfone. An attempt to introduce 3 into Barton–Zard synthesis was unsuccessful and delivered mixture of products arising from the reduction of the quinone moiety. Thus, a protection of the reactive quinonic moiety was necessary to avoid side reactions during the pyrrole synthesis. Conversion of the quinone into corresponding hydroquinone diacetates was preferable over reductive methylation since it requires mild conditions for further deprotection.18

Dione 1 is known to form a deprotonated dihydronaphthoquinone irreversibly upon treatment with bases.7 Treatment of 1 with DBU and acetic anhydride provided diacetate 4. It should be noted that this procedure was found to give higher yields than previously reported aromatization of the dione ring by boiling with acetic anhydride and acetic acid in the presence of p-toluensulfonic acid as a catalyst.19

Diacetate was then used for the preparation of allylsulfone 5, employing a previously established procedure. As expected, compound 5 was formed in good yield. However, under the conditions of Barton–Zard reaction (t-BuOK, THF, isocyanocetate),20 no formation of the corresponding pyrrole compound was observed. Diacetoxynanthracene 6 was the only isolated product. Attempts to optimize the reaction conditions: changing the base (DBU, potassium and sodium tert-butoxides, HMDS), solvents and temperature regimes failed to deliver the target product. It is known that aromatization of cyclohexadienes can be incurred by strong bases.21 However, taking into account that a similar sulfone derivative containing butoxy-groups instead of acetoxy-groups was previously successfully used in the pyrrole synthesis,7 it is interesting that sulfone 6 behaves so differently under basic conditions, when elimination is the predominant pathway.

Thus we focused further efforts on the thermal retro-Diels–Alder approach. 1,4-Naphthoquinone was reacted with 1,3-cyclohexadiene to obtain dione precursor 7. Its acetylation gave 8, which was used for the preparation of the corresponding sulfone 9. As expected, the Barton–Zard reaction with isocyanocetate synthesis delivered pyrrole 10.

In this case tert-butyli isocyanocetate24 was used, since for pyrrole tert-butyli esters a decarboxylation reaction can be performed via solvolysis in neat trifluoroacetic acid. These conditions were expected to secure the hydroquinone moiety from deprotection. Indeed, treatment with TFA for 30 min delivered pyrrole 11 in good yield (68%).

With pyrrole 11 in hand, we succeeded to prepare intermediate porphyrin 12 according to the conventional Lindsey condensation.22 As shown in Scheme 3, pyrrole 11 reacted with benzaldehyde in CH2Cl2 in the presence of BF3·OEt2, followed by oxidation with 2,3-dichloro-5,6-dicyanoquinoné
(DDQ) at room temperature for additional 3 hours to afford porphyrin 12 in 18% yield after purification. After further treatment of the obtained porphyrin 12 with KOH and oxidation by DDQ the resulting crude intermediate was heated at 200 °C in vacuum for 4 h. Target tetraanthraquinonoporphyrin was isolated in 65% yield after chromatographic purification and recrystallization. To our surprise, instead of the expected problems with poor solubility due to π-stacking, we observed a rather good solubility (as compared to tetrnaphtopho- or tetraanthraporphyrins) of the obtained product in common organic solvents (chlorohydrocarbons, aromatics, THF).

The aromatization was clearly observed by the disappearance of methylene groups and the appearance of a new singlet peak in the aromatic region corresponding to eight protons on the anthraquinone rings in the 1H NMR spectrum. It is noteworthy that well-resolved 1H and 13C NMR spectra were obtained after addition of trifluoroacetic acid (TFA) which converted the porphyrin into a dication form. MALDI-TOF mass spectra gave the additional evidence for the formation of Ph4TAQP (ESI†).

The absorption and emission spectra of porphyrins 12, Ph4TAQP and its metal complexes are compared in Fig. 1. Electronic absorption spectra of 12 are similar to other tetra tetraphenyl-β-octalkyloxyprophyrins, such as the derivatives of octaethylporphyrin (OEP) showing a Soret band at 434 nm and Q-bands at 523, 607, 675 nm in CH2Cl2 (for comparison, tetra phenyltetracyclohexenoporphyrin free base: Soret band 439 nm, Q-bands 537, 580, 606, 674 nm). The fluorescence spectrum of 12 is also consistent with this type of porphyrin skeleton, showing a maximum at 718 nm and a low quantum yield of emission (φfl < 0.01 in toluene, λexc = 638 nm).

Ph4TAQP exhibits strongly red-shifted Soret and Q-bands (Fig. 1B). The vibronic structure in the Q-band region is well-resolved. The lowest energy Q-band (752 nm) is red-shifted by 77 nm relative to the corresponding transition of the porphyrin 12 due to the effect of extended π-conjugation. At the same time, intensification of Q-bands is taking place – the
maximum absorption ratio of the Q-band to the Soret band is enhanced from 0.09 (in 12) to 0.35. The free-base shows much stronger emission ($\phi_{em} = 0.08$) than the parent compound 12, with a small Stokes shift (9 nm). Metal insertion has a profound effect on optical properties. The absorption spectra of Zn and Pd-complexes are shown in Fig. 1C and D. Very strong blue-shift by 66 nm upon palladium insertion and 25 nm upon zinc insertion are observed for the lowest energy Q-band. Both complexes show relatively strong emission ($\phi_{em} = 0.11$ and 0.06 for Zn and Pd-complexes respectively). The emission of Ph$_4$TAQ shows multiple maxima that may be associated either with excimer formation or formation of charge-transfer excited states. Solutions of Ph$_4$TAQ and its metal complexes do not decompose noticeably when exposed to daylight for several days, indicating good photostability compared to other π-extended porphyrins.25

Comparison of the absorption spectra of Ph$_4$TAQPPd with those of palladium(II) tetraphenyltetrabenzo- and tetraphenyltetranaphthoporphyrins (Ph$_4$TBPP and Ph$_4$TNPP respectively, Fig. 2) demonstrates the effect of anthraquinone fusion on the porphyrin core with respect to annelation of extra benzo-rings. The strong effect on the energies of S$_1$ and S$_2$ states of the molecule is manifested by the pronounced red shift of the Soret and Q-bands. While in the case of Ph$_4$TBPP and Ph$_4$TNPP the Soret band is shifted only by 20–30 nm with respect to parent palladium(II) tetraphenylporphyrin, fusion of anthracenes causes 100 nm red shift. Nevertheless, a “spectral window” between the Soret and Q-bands allows for the application of Ph$_4$TAQPPd as a sensitizer for the TTA-UC process that will be reported in a separate study.

Conclusions

Two approaches towards the synthesis of TAQP were explored: the one based on the hydroisoindole precursor and bridged dihydroisoindole. The latter was found to be suitable for the synthesis of a target compound using the Barton–Zard reaction. The strategy based on oxidative aromatization of the dihydroisoindole precursor failed to deliver the target compound due to side reactions in the course of pyrrole synthesis. The optical properties of Ph$_4$TAQP indicate electronic features that call for theoretical studies, as well as for better characterization using photophysical and electrochemical experiments. Indeed, new quinonoporphyrins are expected to exhibit interesting electrochemical properties as a result of the directly conjugated porphyrin and quinone moieties. Such materials appear to be of interest in photon energy conversion systems and in other applications. We relay a detailed discussion of the photophysical properties of variously substituted TAQP for a separate study.

Experimental

1,4,4a,9a-Tetrahydroanthraquinone7 and tert-butyl isocyanacetate24 were prepared according to published synthetic protocols. DBU, thiophenol, bis(benzonitrile)palladium(II) chloride, DDQ, N-chlorosuccinimide, Oxone, 1,4-naphthoquinone, trifluoroacetic acid, benzaldehyde, boron trifluoride etherate and extra dry THF were purchased from Sigma-Aldrich. The handling of all air/water sensitive materials was carried out using standard high vacuum techniques. All solvents and reagents were obtained from commercial sources and used as received. Where mixtures of solvents were used, ratios are reported by volume. Column chromatography was carried out on silica gel 60 at normal pressure. NMR spectra were recorded on Bruker DPX 250, Bruker AC300 NMR and Bruker Avance 500 spectrometers, with the solvent proton as an internal standard. Elemental analysis was carried out using a Foss Heraeus Vario EL. Electronic absorption spectra were recorded on a Perkin Elmer Lambda 25 instrument. MALDI-TOF spectra were recorded on a Bruker Reflex spectrometer III instrument using dithranol as a matrix. Melting points were determined on a Büchi hot stage apparatus and are uncorrected. Emission spectra were recorded using a Fluoromax-2 instrument. Emission quantum yields of the compounds were measured relative to the fluorescence of free-base tetraphenylporphyrin ($\phi_{em} = 0.11$)25 in deoxygenated toluene.

2-Benzzenesulfonyl-3-chloro-1,2,3,4-tetrahydro-anthra-quinone 2

1H NMR δ_{H} (300 MHz, CD$_2$Cl$_2$) 8.06 (2H, m), 7.97 (2H, m), 7.79–7.59 (5H, m), 5.03 (1H, q, $J = 3.3$ Hz), 4.05 (1H, m), 3.42–2.92 (4H, m). 13C NMR δ_{C} (75 MHz, CD$_2$Cl$_2$) 184.04, 140.57, 140.45, 139.49, 135.24, 134.59, 134.56, 133.21, 130.52, 129.97, 127.01, 126.94, 62.80, 51.53, 30.72, 20.30. Anal. calcd for C$_{22}$H$_2$ClO$_2$S: C, 61.77; H, 4.41; found: C, 61.23; H, 4.65.

2-Benzzenesulfonyl-anthraquinone 3

1H NMR δ_{H} (300 MHz, CD$_2$Cl$_2$) 8.76 (1H, t, $J = 1.1$ Hz), 8.28 (2H, m), 8.09–8.03 (2H, m), 7.90–7.82 (2H, m), 7.64–7.53 (2H, m). 13C NMR δ_{C} (75 MHz, CD$_2$Cl$_2$) 182.06,
9,10-Diacetoxy-1,4-dihydro-anthracene 4

The title compound was prepared following a modified literature procedure.26 1,8-Diazabicyclodecene-7-ene (10.5 mL, 70 mmol) was added to a stirred solution of 1,4,4a,9a-tetrahydroanthraquinone (6.36 g, 30 mmol) and THF (100 mL) at room temperature. The mixture was cooled in an ice bath and acetic anhydride (8.5 mL, 90 mmol) was added dropwise over a period of 10 min and the resulting solution was stirred for 2 hours. Then diethyl ether (100 mL) was added to precipitate the product. The solid so formed was filtered and washed with ether (50 mL) to give 8.44 g (95% of the product) as a white powder (m.p. 255–257 °C, lit. 256–258 °C).26 1H NMR δH (300 MHz, CD2Cl2) 7.75 (2H, m), 7.51 (2H, m), 5.95 (2H, m), 3.37 (4H, br. s), 2.49 (6H, s), 13C NMR δC (75 MHz, CD2Cl2) 169.57, 142.2, 126.97, 126.52, 125.59, 123.54, 121.62, 25.0, 20.96.

9,10-Diacetoxy-2-benzenesulfonyl-1,2-dihydro-anthracene 5

The title compound was prepared following a modified literature procedure.27 Thiophenol (2 mL, 2.2 g, 20 mmol) was added dropwise to a suspension of N-chlorosuccinimide (2.67 g, 20 mmol) in CH2Cl2 (20 mL) under cooling in an ice bath. The mixture was stirred for 1 h at r.t. and the resulting orange solution was added dropwise to a stirred solution of 9,10-diacetoxy-1,4-dihydro-anthracene (5.92 g, 20 mmol) in CH2Cl2 (150 mL) at 0 °C. The mixture was stirred at room temperature for 2 h and then evaporated in a vacuum. The residue was dissolved in methanol (60 mL) and a suspension of Oxone (12.3 g, 20 mmol) in water (30 mL) was added under vigorous stirring. The mixture was stirred at room temperature for 2 days, diluted with water (100 mL) and extracted with CHCl3. The combined organic layers were dried with Na2SO4 and evaporated to dryness. The resulting solid was dissolved in CH2Cl2 (50 mL) and DBU (3 mL, 20 mmol) was added dropwise over a period of 10 min at 0 °C. The mixture was stirred for 1 h at room temperature, washed with water, then with 10% solution of Na2CO3, and the solution was evaporated in a vacuum. The solid residue was recrystallized from MeOH to give 6.1 g (70%) of the title compound as a white powder (m.p. 155–157 °C). 1H NMR δH (300 MHz, CD2Cl2) 7.69 (4H, m), 7.51 (2H, m), 7.3 (3H, d, J = 6.9 Hz), 6.84 (1H, dd, J = 9.9 Hz), 6.18 (1H, dd, J = 9.9 Hz), 4.09 (1H, m), 3.48 (1H, m), 3.11 (1H, m), 2.49 (3H, s), 2.46 (3H, s), 13C NMR δC (75 MHz, CD2Cl2) 169.71, 136.76, 134.33, 129.88, 129.11, 128.06, 128.0, 127.54, 127.43, 127.06, 122.41, 122.09, 121.85, 121.72, 121.51, 23.1, 20.93. Anal. calcd for C27H27NO6: C, 74.87; H, 5.85; O, 19.1%. Found: C, 74.87; H, 5.85; O, 19.1%.

9,10-Diacetoxy-1,2,3,4-tetrahydro-1,4-etheno-anthracene 9

The title compound was obtained according to the procedure described for 4. Yield: 90%. White powder with m.p. 232–233 °C. 1H NMR δH (300 MHz, CD2Cl2) 7.8 (2H, m), 7.5 (2H, m), 6.55 (2H, m), 4.08 (2H, m), 2.52 (2H, m), 1.58 (4H, s). 13C NMR δC (75 MHz, CD2Cl2) 170.01, 137.63, 135.28, 134.36, 126.61, 126.37, 121.80, 34.95, 24.94, 21.03. Anal. calcd for C20H18O4: C, 74.87; H, 5.85.

9,10-Diacetoxy-1,2,3,4-tetrahydro-1,4-etheno-anthracene 10

The title compound was obtained according to the procedure described for 5. Yield: 65%. White powder with m.p. 213–214 °C. 1H NMR δH (300 MHz, CD2Cl2) 7.81 (3H, m), 7.69 (1H, m), 7.62 (1H, m), 7.51 (5H, m), 4.34 (2H, m), 2.52 (3H, s), 2.42 (3H, s), 1.65 (4H, m). 13C NMR δC (75 MHz, CD2Cl2) 169.80, 169.50, 147.74, 144.23, 139.86, 138.46, 138.14, 134.08, 131.21, 131.18, 129.84, 128.32, 127.23, 127.15, 126.75, 126.56, 122.06, 121.93, 36.5, 35.59, 25.60, 24.81, 21.0, 20.86. Anal. calcd for C26H23O6S: C, 71.45; H, 5.67; found: C, 70.72; H, 5.67.

5,10-Diacetoxy-4,11-etheno-2H-naphtho[2,3-f]isoindole-1-carboxylic acid tert-butyl ester 10

The title compound was obtained according to a previously published general procedure.24 Yield: 78%. White powder with m.p. 186–187 °C. 1H NMR δH (300 MHz, CD2Cl2) 6.82 (1H, br. s), 7.78 (2H, m), 7.5 (2H, m), 6.7 (1H, d, J = 2.7 Hz), 4.93 (1H, m), 4.42 (1H, m), 2.54 (3H, s), 2.53 (3H, s), 1.77 (4H, m), 1.61 (9H, s). 13C NMR δC (75 MHz, CD2Cl2) 169.93, 169.87, 161.40, 138.45, 137.96, 134.75, 134.21, 132.88, 129.02, 126.83, 126.56, 126.55, 121.86, 117.12, 114.22, 81.06, 32.54, 32.29, 28.84, 28.51, 27.20, 26.59, 21.14, 20.06. Anal. calcd for C27H23NO5: C, 70.27; H, 5.90; N, 3.03; found: C, 69.89; H, 6.14; N, 2.87.

5,10-Diacetoxy-4,11-etheno-2H-naphtho[2,3-f]isoindole 11

Compound 10 (1 g, 2.2 mmol) was dissolved in TFA (30 mL), and the solution was stirred for 30 min under Ar at room temperature. After the addition of CH2Cl2 (50 mL), the mixture was washed with water, then with 10% solution of Na2CO3, dried with Na2SO4 and evaporated in a vacuum. The residue was passed through a layer of silica using CH2Cl2 as the eluent. The solvent was evaporated to give 0.53 g (68%) of the title compound as a gray solid (m.p. 130–132 °C). 1H NMR δH (300 MHz, CD2Cl2) 7.76 (2H, m), 7.47 (2H, m), 6.58 (2H, d, J = 2.4 Hz), 4.41 (2H, t, J = 1.3 Hz), 2.53 (6H, s), 1.75 (4H, m).
Porphyrin 12

5,10-Diacetoxy-4,11-etheno-2H-naphtho[2,3-f]isoindole (0.3 g, 0.83 mmol) was dissolved in CH₂Cl₂ (83 mL) freshly distilled from CaH₂, and benzaldehyde (0.088 g, 0.83 mmol) was dissolved in CH₂Cl₂ and purified on a silica gel column (eluent CH₂Cl₂, then CH₂Cl₂:H₂O 7:3). Additional purification by repetitive precipitation from MeOH, filtration and drying in a vacuum. UV/vis (CH₂Cl₂) λ_max (log ε): 552 (5.12), 677 (4.35), 727 (4.84). MALDI-TOF: m/z found 1397.24, calcd for [M+] C₉₂H₄₄N₄O₈Zn 1397.22.

Ph₃TAQP-Zn was obtained in 90% yield after the treatment of a free-base in THF with an excess of Zn(OAc)₂·2H₂O, followed by subsequent precipitation with MeOH, filtration and drying in a vacuum. UV/vis (CH₂Cl₂) λ_max (log ε): 501 (5.05), 629 (4.11), 686 (4.97). MALDI-TOF: m/z found 1439.2361, calcd for [M+] C₉₂H₄₄N₄O₈Zn 1397.24.

Acknowledgements

M.A.F. acknowledges POLINNOVA project (FP7-REGPOT-2012-1) for the financial support. Financial support from the Bulgarian Science Fund (DFNI E 02/11 – SunStore-project) and the European Commission FCPF FRIAS COFUND Fellowship Programme (FP7-MCA-609305) for S.B. are highly appreciated.

Notes and references

3 (a) O. S. Finikova, S. Y. Chernov, A. V. Cheprakov, M. A. Filatov, S. A. Vinogradov and I. P. Beletskaya, Dokl. Chem., 2003, 391, 222; (b) M. A. Filatov, A. V. Cheprakov
(c) M. A. Filatov, A. Y. Lebedev, S. A. Vinogradov and
4 (a) O. S. Finikova, S. E. Aleshchenkov, R. P. Brinas,
Chem., 2005, 70, 4617; (b) M. A. Filatov and
A. V. Cheprakov, Tetrahehedron, 2011, 67, 3559;
(c) E. R. Ranyuk, M. A. Filatov, A. D. Averin, A. V. Cheprakov
and I. P. Beletskaya, Synthesis, 2012, 393; (d) J. M. Manley,
5 V. Gandhi, M. L. Thompson and T. D. Lash, Tetrahehedron,
2010, 66, 1787.
6 K. Kurotobi, K. S. Kim, S. B. Noh, D. Kim and A. Osuka,
7 (a) M. A. Filatov, S. Baluschev, I. Z. Ilieva, V. Enkelmann,
T. Miteva, K. Landfester, S. E. Aleshchenkov and
(b) H. Yamada, D. Kuzuhara, T. Takahashi, Y. Shirnizu,
K. Uota, T. Okujima, H. Uno and N. Ono, Org. Lett., 2008,
10, 2947.
Chem., 2010, 75, 2518.
9 (a) A. V. Cheprakov, in The Synthesis of π-Extended Porphyrins.
Handbook of Porphyrin Science, ed. K. M. Kadish,
K. M. Smith and R. Guilard, World Scientific, Singapore,
2011, vol. 13; (b) N. Ono, H. Yamada and T. Okujima, in
Synthesis of Porphyrins Fused with Aromatic Rings. Handbook
of Porphyrin Science, ed. K. M. Kadish, K. M. Smith and
10 S. Banala, T. Ruhl, K. Wurst and B. Krautler, Angew. Chem.,
13 (a) S. Banala, K. Wurst and B. Krautler, J. Porphyrins Phtha-
loycyanines, 2014, 18, 115; (b) S. Banala, R. G. Huber,
Commun., 2012, 48, 4359; (c) B. Kräutler, C. S. Sheehan and
Commun., 1972, 393; (b) J. Bornstein, J. E. Shields and
15 A. V. Cheprakov and M. A. Filatov, J. Porphyrins Phtha-
16 (a) S. Ito, N. Ochi, T. Murashima, N. Ono and H. Uno,
Chem. Commun., 2000, 893; (b) T. Okujima, T. Kikkawa,
H. Nakano, H. Kubota, N. Fukugami, N. Ono, H. Yamada
(c) Y. Tomimori, T. Okujima, T. Yano, S. Mori, N. Ono,
H. Yamada and H. Uno, Tetrahehedron, 2011, 67, 3187;
(d) H. Uno, H. Uoyama, C. Chensin, H. Tahara, Y. Shimizu,
H. Hagiwara, Y. Hansaki, H. Yamada and T. Okujima,
Heterocycles, 2010, 80; (e) H. Uoyama, T. Takiue,
K. Tomina, N. Ono and H. Uno, J. Porphyrins Phthal-
loycyanines, 2009, 13, 122.
17 (a) D. P. Arnold, L. Burgess-Dean, J. Hubbard and
M. Abdur Rahman, Aust. J. Chem., 1994, 969; (b) Y. Abel,
E. Haake, G. Haake, W. Schmidt, D. Struve, A. Walter and
18 B. P. Bandgar, L. S. Uppalla, A. D. Sagar and
19 J. J. Stromich, A. K. Weber, Y. R. Mirzaei, M. D. Caldwell
20 O. S. Finikova, A. V. Cheprakov, I. P. Beletskaya, P. J. Carroll
21 H. Pines and W. M. Stalick, Base-catalyzed reactions of
hydrocarbons and related compounds, Academic Press,
22 J. S. Lindsey, I. C. Schreiman, H. C. Hsu, P. C. Kearny
23 M. A. Filatov, E. Heinrich, D. Busko, I. Z. Ilieva,
2015, 17, 6501.
25 P. G. Seybold and M. Gouterman, J. Mol. Spectrosc., 1969,
31, 1.
1208.