Fullerene C\textsubscript{70} characterization by 13C NMR and the importance of the solvent and dynamics in spectral simulations†

Jakub Kaminskýa,* Miloš Buděšinskýa, Stefan Taubertb, Petr Bouřa and Michal Strakaa,*

The nuclear magnetic resonance (NMR) spectroscopy combined with theoretical calculations is an important tool for fullerene identification. However, the accuracy of available theoretical methods is often not adequate. Therefore, in this work, different computational aspects needed to simulate realistically chemical shifts in the C\textsubscript{70} molecule are investigated by density functional theory (DFT) calculations. The importance of the functional choice, basis set, solvent, and molecular motions was assessed. The solvent was simulated using the implicit conductor-like polarized continuum model. The molecular motions were included via anharmonic corrections and averaging of snapshots obtained from classical and first-principles molecular dynamics (MD) simulations. Comparison to experiment revealed that density functional calculations typically overestimate the 13C NMR chemical shifts. Hybrid functionals, such as BHandH and BHandHLYP, and long-range corrected functionals, such as \textit{w}B97\textit{x}d and CAM-B3LYP, give the best results. While the solvent has a minor effect (chemical shift changes by \textless 1 ppm), the vibrational and dynamical effects are surprisingly large, causing changes up to 9 ppm.

Introduction

Since the initial discovery of C\textsubscript{60} by Kroto \textit{et al.}1 the fullerene science has evolved into a rich multidisciplinary field. Fullerenes and their derivatives have been intensively studied as materials for solar cells, quantum computing, memory devices, magnetic storage devices, molecular containers, MRI contrast agents, and other applications.2,3 The fullerene cage structures have been rationalized by the isolated-pentagon rule (IPR).4 The number of the possible isomers of C\textsubscript{n} grows with \(n\). For example, the C\textsubscript{60} fullerene has one isomer, C\textsubscript{80} has seven isomers, and for C\textsubscript{84} 24 IPR isomers have been predicted to exist. In spite of the similarity of different fullerenes and their isomers, owing to their high molecular symmetry, they can be in many cases distinguished according to the number and intensity of spectral lines in 13C nuclear magnetic resonance (NMR) spectra. The NMR spectroscopy, hand in hand with theoretical interpretation of the experimental NMR spectra, is thus an important analytical tool in fullerene chemistry.

Identification of fullerenes can be significantly enhanced by calculations of fullerene structures and 13C NMR parameters, typically based on the density functional theory (DFT).5–11 In a review by Heine,12 however, typical accuracy of 13C NMR DFT calculations was estimated to be 2 ppm, which may not be sufficient for larger fullerenes with a denser spacing (\textless 1 ppm) of spectral lines.

To assess the reliability of commonly used methods for calculations of the 13C chemical shift we use the C\textsubscript{70} fullerene as a convenient model. It contains five different symmetry-equivalent
carbon types (assigned as Cₐ–Cₑ in Fig. 1) which cover the range of ~130–150 ppm spanning to a large part typical fullerene ¹³C chemical shifts. The performance of various density functionals and basis set convergence are analyzed.

In the next stage, we assess the effects of dynamics, temperature, and solvent on the calculated ¹³C NMR chemical shifts. The effects of solvent are approximated using the conductor-like polarized continuum model (CPCM). Several approaches of involving the molecular motion in the computations are explored: averaging snapshots obtained from classical molecular dynamics (MD) and the first-principles molecular dynamics (FPMD) trajectories, and a quantum averaging of anharmonic vibrational corrections.

Methods

DFT calculations

The static DFT calculations and the first-principles MD were performed using the Turbomole 6.3.1 (ref. 17) and Gaussian 09, Revision A.02 (ref. 18) program packages. Classical MD was run using the Tinker program suite. The geometry was optimized using several DFT functionals (BP86, BLYP, OLYP, BPBE, OPBE, SV5LYP, B3LYP, O3LYP, X3LYP), meta GGA (M06L), hybrid (B1LYP, B3LYP, O3LYP, X3LYP) and the Ahlrichs-type basis sets (def2-SVP, def2-TZVP, and def2-QZVP).

The nuclear magnetic shielding was calculated with GGA (HCTH, BLYP, OLYP, BP86, BPBE, OPBE, SV5LYP, M06L, B1LYP, B3LYP, O3LYP, X3LYP, BHHandH/Gaussian09, BHHandHLYP, and B97), meta GGA (M06H/18), and range-separated hybrid (CAM-B3LYP, wB97x) functionals. The list thus enables us to compare the GGA and hybrid functionals, different exchange potentials (e.g. in B1LYP, B3LYP, O3LYP, X3LYP) and various degrees of the involvement of the HF exchange (e.g. BLYP with 0% exchange, B3LYP (20%), and BHHandHLYP (50%)). Because common functionals may suffer from unphysical long-range behavior of the non-Coulomb part of exchange, the effect of long-range corrections was also taken into account by involving the CAM-B3LYP and wB97x functional.

The basis set convergence was investigated using the IGLO-II, IGLO-III, and IGLO-IV basis sets optimized for calculations of NMR parameters. A set of Jensen’s polarization-consistent basis sets, pcS/2, was also tested.

Calculated isotropic nuclear shielding (σ) was converted to chemical shift (δ) using tetramethylsilane (TMS) as a reference and C₆₀ as a secondary reference, according to formula

\[\delta_i = \sigma(C_{60}) - \sigma(C_{70}) + \delta(C_{60},TMS) \]

where \(\sigma_i \) is a signal of C₇₀ carbon and \(\delta(C_{60},TMS) = 143.15 \text{ ppm} \).

Solvent modelling

Effects of solvent were approximated using the conductor-like polarized continuum model (CPCM) as implemented in Gaussian 09. Note that 1,1,2,2-tetrachloroethene was used instead in ref. 44, not supported by Gaussian 09, but with a very similar dielectric constant (7.19 for 1,1,2,2-tetrachloroethane and 8.42 for 1,1,2,2-tetrachloroethene).

Quantum vibrational averaging

The nuclear potential of C₇₀ was expanded to a Taylor series up to fourth powers of all normal mode coordinates \(Q_i \). Only cubic and semi-diagonal normal mode quartic constants (with two or more identical indices) were considered, as these can be obtained by a single normal mode numerical differentiation of harmonic force fields. The anharmonic force field was calculated at the Hartree–Fock (HF) level using the 6-31G basis set, while the shielding derivatives were obtained at the BP86/IGLO-II level. Gaussian 09 was used for the Hessian computations for geometries displaced in normal modes. Program S4 interfaced to Gaussian was used for the anharmonic vibrational averaging.

One of the limitations of anharmonic vibrational corrections performed here is the necessity to use Hartree–Fock approximation which overestimates harmonic frequencies by about 10%. While DFT provides typically better harmonic frequencies deviating from experiment by only a few percent, it was not affordable for such extensive calculations on C₇₀. We do not suppose that the relatively small frequency error of the HF method would significantly change the anharmonic corrections added in a perturbation way only.

For vibrational ground state \(\psi_n \) isotropic nuclear magnetic shielding was calculated as

\[\sigma_n = \langle \psi_n | \sigma | \psi_n \rangle \]

where

\[\sigma = \sigma_0 + \sum_i \sigma_1 Q_i + \frac{1}{2} \sum_{ij} \sigma_2 Q_i Q_j \]

The \(\sigma_1 \) and \(\sigma_2 \) are the first and second normal mode isotropic shielding derivatives obtained numerically with a differentiation step of 0.2 Å. This parameter was found to be optimal for many systems including fullerenes before. Within the second-order degeneracy-corrected perturbational (PT2) scheme the wave function is expanded in the harmonic oscillator basis.

Alternatively, the vibrational configuration interaction (VCI) was used for vibrationally averaged shieldings, where the Hamiltonian was diagonalized in the harmonic oscillator basis.
functions \(|i\rangle\), up to doubly excited states) limited by an interaction parameter

\[
\frac{|\langle i|V|i\rangle|}{(E_n - E_i)} \leq 0.1
\]

where \(n\) is a fundamental vibration or the ground state.

A third approximation tried was based on the harmonic oscillator limit for energies\(^55\) and provided temperature-corrected shielding (TCS) as

\[
\sigma = \sigma_0 + 0.25\sigma_i \exp(-\omega_i/kT)[1 - \exp(-\omega_i/kT)]^{-1}
\]

Although the anharmonic methods should be in principle equivalent, they differ because of the approximations used and the vast number of harmonic oscillator (HO) states that should be considered for \(C_{70}\). The PT2 method provides correction for a large number of HO states but may fail for large anharmonic effects and Fermi resonances. The resonances are better represented in VCI, where, however, a smaller number of the states can be considered. Neither the VCI nor PT2 implementation involves the temperature effects involved in TCS, where, however, simplified anharmonic energy and property surfaces are supposed. Therefore, we used all three methods to get a feeling of the significance of the anharmonic vibrational averaging of the chemical shift.

Molecular dynamics

The BP86/def-TZVP optimized structure of \(C_{70}\) was minimized using the Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) procedure in Tinker. The minimized geometry was evolved for 1 ns. The classical MD trajectories with the MM3 force field\(^56\) were obtained using the modified Beeman algorithm with a 1 fs integration time step at constant temperature \(T = 300\ K\). The MM3 force field was modified for the \(C_{70}\) carbon atoms as described in the ESI.\(^\dagger\) Chemical shifts were calculated for 40 snapshots at the BHandHLYP/IGLO-III level and averaged. To minimize systematic error, the dynamical correction was calculated as a difference between the average and the shielding calculated for MM3-minimized geometry.

First-principles molecular dynamics

FPMD simulations were performed on the BP86/def-SVP Born–Oppenheimer potential energy surface. The leapfrog Verlet algorithm as implemented in the Turbomole code\(^17\) was used to update the coordinates. To avoid problems due to the limited numerical precision in the density optimization and the force calculation, the thresholds for energy and CPHF equations convergence were tightened to 10\(^{-8}\) a.u. A denser numerical grid denoted as “\(mS^2\)” was used. The time step was 80 a.u. (1.93 fs). To achieve a better sampling of the configuration space we ran several microcanonical (NVE ensemble) dynamics trajectories 1.2 ps long. The initial velocities were randomly distributed and corresponded to the temperature of 300 K. A total of four MD trajectories of 1.2 ps were produced for the averaging of snapshots. The initial 0.2 ps part of each trajectory was discarded as an equilibration phase, and then 16 equidistant snapshots of each trajectory (64 in total) were taken for the \(^{13}\)C NMR calculations (BHandHLYP/IGLO-III) and averaging.

To verify the time-correlation of the data the block-averaging method was used.\(^57\) The mean errors of average were found in the interval of ±0.2 to ±0.25 ppm for the NMR shielding of different carbons, which after subtraction from the \(C_{60}\) reference give a statistical error of ±0.35 ppm in the dynamical corrections for shielding. The dynamical corrections were obtained as differences between the average and result for the BP86/def-SVP optimized structure.

NMR experiment

Fullerenes (\(C_{60}\) and \(C_{70}\)) were purchased from Sigma. \(^{13}\)C NMR spectra of \(C_{70}\) were recorded in deuterated ortho-dichlorobenzene (ODCB) using a Bruker Advance II\(^60\) 600 and 500 MHz spectrometer equipped with a cryoprobe. The spectra were measured at several temperatures (278, 298, 318, 338, 358 and 378 K). A small amount of \(C_{60}\) was detected (at 142.86 ppm) in the sample of \(C_{70}\). The chemical shifts were referenced to tetramethylsilane (TMS).

Results and discussion

Basis set convergence

We used optimized BP86/def-TZVP \(C_{70}\) structure to investigate the effect of the basis set and DFT functional on the \(^{13}\)C NMR chemical shifts in \(C_{70}\) calculated for the molecule at rest in vacuo. The BP86/def-TZVP level previously provided results in an excellent agreement with the experimental structural parameters for the \(C_{60}\) molecule.\(^58,59\)

Table 1 lists the \(^{13}\)C chemical shifts for \(C_{70}\) calculated using the different IGLO-\(n\) type basis sets. The IGLO-III results appear converged within 0.2 ppm as compared to the IGLO-IV basis set, which can be considered to be near the basis set limit. Corrections beyond IGLO-IV can be expected to lie below 0.2 ppm.\(^60\) Hence the error of the IGLO-III basis set calculations with respect to the basis set limit can be estimated with safe margins to be within 0.4 ppm. With a conservative error estimate of 0.4 ppm for \(^{13}\)C shifts the IGLO-III basis set provides a good compromise between the accuracy and the computational cost. IGLO-IV is recommended if higher accuracy is needed.

Following the suggestion of a referee, the basis set convergence was also tested on the set of Jensen’s polarization consistent pC\(n\)S basis sets\(^43\) known to provide accurate nuclear shieldings.\(^61\) The convergence of \(^{13}\)C nuclear shieldings in \(C_{60}\) obtained with pC\(S\)-\(n\) \((n = 0, 1, 2, 3)\) can be seen in Fig. S1 (ESI\(^\dagger\)). Table S1 (ESI\(^\dagger\)) lists the \(^{13}\)C chemical shifts for \(C_{70}\) calculated using different

| Table 1 Basis set convergence of \(^{13}\)C chemical shifts (in ppm) for \(C_{70}^a\) |
|-----------------|----------------|----------------|----------------|
| Carbon | IGLO-II | IGLO-III | IGLO-IV |
| Ca | 153.3 | 154.4 | 154.2 |
| Cb | 148.7 | 149.6 | 149.5 |
|Cc | 150.0 | 151.2 | 151.0 |
|Cd | 147.4 | 148.1 | 148.0 |
|Ce | 130.7 | 130.5 | 130.5 |

a Chemical shifts were calculated for BP86/def-TZVP optimized geometry. The BP86 functional was used for \(^{13}\)C chemical shifts.
pc9-\(n\) (\(n = 0, 1, 2\)) basis sets. It is apparent that the IGLO-\(n\) basis sets provided faster convergence than pc8-\(n\).

Performance of various density functionals

The results obtained using the selected DFT functionals are summarized in Table 2, where the calculated \(^{13}\text{C}\) shifts as well as their root-mean-square deviations (RMSD) from the experimental values are collected. The results in Table 2 are ordered according to the RMSD. Typically, the DFT calculations overestimate the experimental \(^{13}\text{C}\) NMR chemical shift by several ppm. Obviously, the effects of solvent and temperature are not included at this stage, and we can compare only the main trends exhibited by the functionals.

Nevertheless, for the gas-phase \(\text{C}_{70}\) molecule at rest it appears that the long-range corrected functionals CAM-B3LYP and wb97xd as well as the hybrid functionals with 50\% of exact-exchange admixture BHandH and BHandHLYP perform the best, while the non-hybrid GGA functionals give a worse agreement with the experiment. The OPBE functional, provides results of the same accuracy as BHandHLYP with much smaller CPU cost. The good performance of the OPBE\(^{52,63}\) as well as “half-and-half” functionals for NMR parameters has been noticed elsewhere.\(^{58,59,64–67}\) A good performance is provided also by the M06L pure DFT functional of Truhlar and Zhao.\(^{13}\)

Combining different exchange functionals with the LYP correlation along the B1LYP, B3LYP, X3LYP, and O3LYP series shows rather marginal dependence of the performance on the exchange functional. Increasing the exact exchange admixture in the functional generally lowers the calculated \(^{13}\text{C}\) chemical shifts, bringing them closer to the experimental ones, as seen in Fig. 2. A decrease of the RMSD with increasing exact-exchange admixture is observed for relative carbon shifts (C signals relative to \(C_0\)) in the relative 13\text{C} shifts (C–C e).

Table 2 Performance of DFT functionals for \(^{13}\text{C}\) chemical shifts (in ppm) in \(\text{C}_{70}\) with the root-mean-square deviation (RMSD) from experiment

<table>
<thead>
<tr>
<th>Functional</th>
<th>(C_a)</th>
<th>(C_b)</th>
<th>(C_c)</th>
<th>(C_d)</th>
<th>(C_e)</th>
<th>RMSD(^a) (RMSD(^b))</th>
</tr>
</thead>
<tbody>
<tr>
<td>wb97xd</td>
<td>150.6</td>
<td>147.3</td>
<td>147.9</td>
<td>145.8</td>
<td>132.3</td>
<td>0.4 (0.4)</td>
</tr>
<tr>
<td>CAMB3LYP</td>
<td>151.8</td>
<td>148.0</td>
<td>149.0</td>
<td>146.7</td>
<td>132.5</td>
<td>0.6 (0.7)</td>
</tr>
<tr>
<td>M06L</td>
<td>152.8</td>
<td>148.0</td>
<td>149.7</td>
<td>146.6</td>
<td>130.8</td>
<td>0.7 (0.7)</td>
</tr>
<tr>
<td>OPBE</td>
<td>152.9</td>
<td>148.4</td>
<td>149.9</td>
<td>147.1</td>
<td>129.9</td>
<td>0.8 (0.8)</td>
</tr>
<tr>
<td>BHandHLYP</td>
<td>152.7</td>
<td>148.6</td>
<td>149.9</td>
<td>147.0</td>
<td>132.7</td>
<td>0.8 (0.9)</td>
</tr>
<tr>
<td>BHandH</td>
<td>152.8</td>
<td>148.8</td>
<td>150.1</td>
<td>147.1</td>
<td>132.1</td>
<td>0.9 (0.9)</td>
</tr>
<tr>
<td>O3LYP</td>
<td>153.2</td>
<td>148.7</td>
<td>150.3</td>
<td>147.4</td>
<td>131.1</td>
<td>0.9 (1.0)</td>
</tr>
<tr>
<td>HCTH</td>
<td>153.3</td>
<td>148.6</td>
<td>150.3</td>
<td>147.4</td>
<td>130.5</td>
<td>0.9 (1.0)</td>
</tr>
<tr>
<td>OLYP</td>
<td>153.5</td>
<td>148.8</td>
<td>150.4</td>
<td>147.5</td>
<td>130.5</td>
<td>1.0 (1.0)</td>
</tr>
<tr>
<td>B98</td>
<td>153.6</td>
<td>149.2</td>
<td>150.7</td>
<td>147.8</td>
<td>131.6</td>
<td>1.1 (1.1)</td>
</tr>
<tr>
<td>B1LYP</td>
<td>153.7</td>
<td>149.2</td>
<td>150.7</td>
<td>147.8</td>
<td>132.0</td>
<td>1.1 (1.2)</td>
</tr>
<tr>
<td>X3LYP</td>
<td>153.8</td>
<td>149.3</td>
<td>150.8</td>
<td>147.9</td>
<td>131.8</td>
<td>1.1 (1.2)</td>
</tr>
<tr>
<td>B3LYP</td>
<td>153.8</td>
<td>149.3</td>
<td>150.9</td>
<td>147.9</td>
<td>131.7</td>
<td>1.1 (1.2)</td>
</tr>
<tr>
<td>PBE/PBE</td>
<td>154.2</td>
<td>149.5</td>
<td>151.1</td>
<td>148.0</td>
<td>130.4</td>
<td>1.2 (1.3)</td>
</tr>
<tr>
<td>BLYP</td>
<td>154.8</td>
<td>150.0</td>
<td>151.5</td>
<td>148.5</td>
<td>131.0</td>
<td>1.4 (1.5)</td>
</tr>
<tr>
<td>SV3LYP</td>
<td>154.8</td>
<td>150.1</td>
<td>151.6</td>
<td>148.5</td>
<td>129.7</td>
<td>1.4 (1.5)</td>
</tr>
<tr>
<td>M06HF</td>
<td>155.5</td>
<td>152.3</td>
<td>151.0</td>
<td>148.5</td>
<td>132.7</td>
<td>1.7 (1.8)</td>
</tr>
<tr>
<td>BP86</td>
<td>155.6</td>
<td>150.8</td>
<td>152.4</td>
<td>149.4</td>
<td>131.9</td>
<td>1.7 (1.8)</td>
</tr>
<tr>
<td>Exp.(^a)</td>
<td>150.8</td>
<td>147.8</td>
<td>148.3</td>
<td>144.4</td>
<td>130.8</td>
<td>—</td>
</tr>
<tr>
<td>Exp.(^b)</td>
<td>150.3</td>
<td>147.1</td>
<td>147.8</td>
<td>145.0</td>
<td>130.5</td>
<td>—</td>
</tr>
<tr>
<td>B3LYP(^c)</td>
<td>151.2</td>
<td>147.0</td>
<td>148.2</td>
<td>146.3</td>
<td>132.1</td>
<td>0.5 (0.5)</td>
</tr>
</tbody>
</table>

\(^a\) Ref. 13. \(^b\) This work. \(^c\) Values using B3LYP/6-31G\(^*\) taken from ref. 10.

The solvent effect

As seen in Table 3, the inclusion of the solvent within the CPCM implicit solvent model moderately decreases the calculated \(^{13}\text{C}\) shifts by \(0.5\)–\(1.0\) ppm towards the experimental values. Note that the new experiment performed in this work in ODCB solvent (\(\epsilon = 9.93\))

Table 3 Vacuum vs. solvent chemical shifts (in ppm) calculated in \(\text{C}_{70}\)\(^*\)

<table>
<thead>
<tr>
<th>Functional</th>
<th>(C_a)</th>
<th>(C_b)</th>
<th>(C_c)</th>
<th>(C_d)</th>
<th>(C_e)</th>
<th>RMSD</th>
<th>RMSD(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exp.</td>
<td>150.8</td>
<td>152.8</td>
<td>152.3</td>
<td>153.5</td>
<td>153.2</td>
<td>150.6</td>
<td>150.2</td>
</tr>
<tr>
<td>Vac.</td>
<td>147.8</td>
<td>148.8</td>
<td>148.2</td>
<td>148.8</td>
<td>148.4</td>
<td>147.3</td>
<td>146.7</td>
</tr>
<tr>
<td>Solv.</td>
<td>148.3</td>
<td>150.1</td>
<td>149.6</td>
<td>150.4</td>
<td>150.1</td>
<td>147.9</td>
<td>147.5</td>
</tr>
<tr>
<td>BHandH</td>
<td>144.4</td>
<td>147.1</td>
<td>146.9</td>
<td>147.5</td>
<td>147.4</td>
<td>145.8</td>
<td>145.5</td>
</tr>
<tr>
<td>OLYP</td>
<td>130.8</td>
<td>132.1</td>
<td>131.8</td>
<td>130.5</td>
<td>130.3</td>
<td>132.3</td>
<td>132.0</td>
</tr>
<tr>
<td>RMSD</td>
<td>0.8</td>
<td>0.7</td>
<td>1.0</td>
<td>0.9</td>
<td>0.4</td>
<td>0.5</td>
<td>0.9</td>
</tr>
<tr>
<td>RMSD(^a)</td>
<td>0.4</td>
<td>0.4</td>
<td>1.3</td>
<td>1.3</td>
<td>0.8</td>
<td>0.9</td>
<td>0.9</td>
</tr>
</tbody>
</table>

\(^a\) The BP86/def-TZVP or BP86/def-TZVP/CPCM geometry was used. Implicit solvent parameters for 1,1,2-trichloroethane and the IGLO-III basis set for shielding calculations were employed. RMSD is the root-mean-square deviation from experimental values in ref. 13. RMSD\(^a\) is calculated for relative chemical shifts (\(C_0\)) in.
provided almost identical results to the previous experiments done in 1,1,2,2-tetrachloroethane (see Table 1). This suggests a limited dependence of the 13C NMR chemical shifts on the kind of solvent for this non-polar molecule. A closer look at Table 3 reveals that the BHandH and OLYP functionals decrease calculated shifts towards experimental results (RMSD drop of ~0.1 ppm), while including the effects of solvent slightly increases the RMSD error at the wB97xd level, from 0.4 to 0.5.

Equilibrium geometry effect

The effect of the equilibrium geometry on the calculated 13C shifts for C_{70} is illustrated in Table 4. While improving the basis set from def-TZVP towards def2-QZVP, the shift decreases towards the experiment in a uniform way, by about 1 ppm, when comparing the def-TZVP and def2-QZVP structures.

Changing the DFT functional used for the optimization leads to substantially larger shift changes (obtained at the BHandHLYP/IGLO-III level), and they can both improve or worsen the results, as seen in Table 4. The B3LYP structure provides chemical shifts closer to experiment, while the B97d structure largely overestimates the shifts. If relative chemical shifts are compared to experimental results in Table 4 via RMSD (obtained from C signals relative to C_a), the B3LYP functional provides worse agreement than BP86 and B97d.

The seemingly good performance of, e.g. the B3LYP/def2-TZVP structure as compared to our default level BP86/def-TZVP is presumably due to error cancellation, as seen in Fig. 3, where the C–C distances in C_{60} calculated at different levels are compared to the experimental ones. The B3LYP/def2-TZVP or BHandHLYP/def2-TZVP levels provide worse calculated C–C distances than our default level for structure optimization BP86/def-TZVP. The BP86/def/TZVP level appears to provide reliable molecular structures also for endohedral helium fullerenes.\(^{58,59}\)

The molecular motions and 13C chemical shifts

The results summarizing different strategies for accounting of the temperature and dynamics are summarized in Table 5, as corrections to individual carbon nuclear magnetic shieldings, i.e. differences between dynamically/vibrationally averaged and optimized-structure nuclear shieldings. Averaged distances and

<table>
<thead>
<tr>
<th>Structure</th>
<th>C_a</th>
<th>C_b</th>
<th>C_c</th>
<th>C_d</th>
<th>C_e</th>
<th>RMSD (RMSD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>def-SVP*</td>
<td>152.2</td>
<td>148.2</td>
<td>149.5</td>
<td>146.5</td>
<td>131.6</td>
<td>0.6 (0.4)</td>
</tr>
<tr>
<td>def-TZVP</td>
<td>152.8</td>
<td>148.8</td>
<td>150.1</td>
<td>147.1</td>
<td>132.1</td>
<td>0.8 (0.4)</td>
</tr>
<tr>
<td>def2-TZVP*</td>
<td>151.9</td>
<td>147.9</td>
<td>149.3</td>
<td>146.5</td>
<td>131.2</td>
<td>0.5 (0.5)</td>
</tr>
<tr>
<td>def2-QZVP*</td>
<td>151.9</td>
<td>147.8</td>
<td>149.2</td>
<td>146.4</td>
<td>131.2</td>
<td>0.5 (0.5)</td>
</tr>
<tr>
<td>BP86</td>
<td>152.8</td>
<td>148.8</td>
<td>150.1</td>
<td>147.1</td>
<td>132.1</td>
<td>0.8 (0.4)</td>
</tr>
<tr>
<td>B3LYP*</td>
<td>151.9</td>
<td>147.8</td>
<td>149.0</td>
<td>146.5</td>
<td>131.2</td>
<td>0.5 (0.5)</td>
</tr>
<tr>
<td>B97d</td>
<td>155.1</td>
<td>151.0</td>
<td>152.3</td>
<td>149.7</td>
<td>134.6</td>
<td>1.9 (0.4)</td>
</tr>
<tr>
<td>Exp.</td>
<td>150.8</td>
<td>147.8</td>
<td>148.3</td>
<td>144.4</td>
<td>130.8</td>
<td></td>
</tr>
</tbody>
</table>

* The BP86 functional was used. ** The def2-TZVP basis set was used. RMSD is the root-mean-square deviation from experimental values ref. 13, RMSD\(^f\) is calculated for relative chemical shifts (C–C\(_a\)).

Table 5 Dynamical effects on 13C nuclear magnetic shieldings (ppm) presented as difference between vibrationally averaged and minimum structure results

<table>
<thead>
<tr>
<th>Method</th>
<th>C_a</th>
<th>C_b</th>
<th>C_c</th>
<th>C_d</th>
<th>C_e</th>
<th>C_{60}</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT2(^a)</td>
<td>-4.6</td>
<td>-4.5</td>
<td>-4.6</td>
<td>-4.5</td>
<td>-4.5</td>
<td>—</td>
</tr>
<tr>
<td>VCI(^b)</td>
<td>-5.0</td>
<td>-5.0</td>
<td>-5.1</td>
<td>-5.5</td>
<td>-6.3</td>
<td>—</td>
</tr>
<tr>
<td>TCS(^c)</td>
<td>-7.3</td>
<td>-7.2</td>
<td>-7.3</td>
<td>-7.9</td>
<td>-9.2</td>
<td>—</td>
</tr>
<tr>
<td>MD(^d)</td>
<td>-6.0</td>
<td>-3.8</td>
<td>-5.0</td>
<td>-5.7</td>
<td>-2.1</td>
<td>-3.4</td>
</tr>
<tr>
<td>FPMMD(^e)</td>
<td>-1.4</td>
<td>-2.0</td>
<td>-2.3</td>
<td>-2.4</td>
<td>-5.8</td>
<td>-1.4</td>
</tr>
<tr>
<td>FPMMD/COSMO(^f)</td>
<td>-1.3</td>
<td>-1.2</td>
<td>-1.2</td>
<td>-1.5</td>
<td>-1.7</td>
<td>-1.2</td>
</tr>
</tbody>
</table>

* Potential HF/6-31G//level for NMR BP86/IGLO-II. ** Potential MM3// level for NMR BP86/IGLO-II. * Potential BP86/def-SVP//level for NMR BHandHLYP/IGLO-III.

Spatial fluctuations of carbon atoms derived from the simulations are detailed in Table S3 (ESI\(^+\)). The changes caused by the molecular motions for the gas-phase C_{70} molecule can be assigned as deshielding and are relatively large, up to ca. ~9 ppm, very much depending on the method. The positive (shielding) contribution result for C_a in the MD line in Table 5 may be an artifact caused by the inaccurate force field. The vibrational averaging in PT2 approximation gives nearly uniform deshielding of about ~4.5 ppm for all carbon types, while the TCS, classical MD, and FPMMD approaches show relatively more variable effects. The corrections for carbon C_e are significantly different from the other carbon types. The geometric fluctuations of atoms C_a–C_e around the equilibrium position are rather uniform (Table S4, ESI\(^+\)), hence we infer that the differential dynamical contributions for C_a–C_e in FPMMD originate from the fluctuations in the electronic structure.
excluded then the “dynamical” contribution for C60 represents approximately 70% of average C70 values (MD, FPMD). The vibrational (PT2, VCI, TCS) contributions to the 13C NMR chemical shifts in C70 are likely to be similar as in C60. Therefore, the usage of C60 as the secondary reference will partly cancel the dynamical corrections.

If the best DFT results in Table 2 are added to the dynamical corrections in Table 5 (taken with opposite sign to turn the nuclear magnetic shielding into the chemical shift), the agreement with the experiment is not improved. However, when the FPMD simulations are performed in the solvent, the dynamical corrections (Table 5) for the 13C nuclear magnetic shielding are still deshielding but now considerably smaller in absolute size and more uniform (−1.2 to −1.7 ppm) than those obtained for FPMD simulation in vacuo. A detailed look reveals that the solvent damps the molecular motions. This is documented in Table S2 (ESI†) on the average deviations from equilibrium positions.

The different contributions to the total 13C NMR chemical shifts in C70 discussed above are summarized in Fig. 4. The inclusion of solvent and basis set correction decreases the gas phase shifts and thus improve the agreement with experiment.

The contributions due to molecular motions (FPMD is shown as example in Fig. 4) are mostly positive, and shift the values away from the experimental ones. If the FPMD simulations could be run longer, an improvement of a couple of tenths of ppm could be expected due to somewhat large statistical error (mean error of the average, see the Methods section) obtained, ±0.35 ppm for the dynamical corrections to the 13C chemical shift. The total calculated 13C shifts corrected for the basis set error and dynamical solvent are again closer to the experimental ones. However, the inclusion of the dynamical corrections including solvent does not bring any significant improvement over the static molecule in vacuo results, because they are small in size, relatively uniform, and largely cancelled by the dynamical effect of the reference C60 compound.

The temperature dependence

Vibrational averaging obtained using the TCS method also enables the estimation of the temperature dependence of the carbon chemical shifts in C70. Results for 273 K and 373 K calculated using two different computational levels are shown in Table S4 (ESI†). The calculated and experimental changes (related to value for carbon C6) are shown in Fig. 5. The temperature dependence appears to be relatively uniform for all carbons at both levels, ~0.6–0.9 ppm per 100 K. Experimental dependence can be seen in Fig. S2 (ESI†). The correlation between experimental and theoretical results is clear. However, the observed change is about 5 times smaller than in theory. This can be partially attributed to the missing solvent effects in the TCS calculations, which, however, could not be included due to the computational time limits.

Conclusions

To estimate the accuracy of available theoretical procedures, 13C NMR chemical shifts in the C60 fullerene were modelled using various density functionals and basis sets. The effects of solvent, dynamics, and temperature on the 13C shifts in the theoretical simulations were discussed. Reasonable 13C chemical shift values within several ppm from the experimental results could be obtained already by the usual calculations of a gas-phase molecule at rest. With hybrid or long-range corrected functionals the calculated chemical shifts were overestimated by about 2 ppm. The largest errors, up to 5 ppm, were found for the GGA functionals, such as BP86. The basis set effects on the 13C shifts calculated for the IGLO-II to IGLO-IV series are moderate; the errors using the IGLO-III basis set are estimated within 0.4 ppm of the basis set limit, or 0.2 ppm from IGLO-IV results. Improving the basis set size in the structure optimization resulted in changes a few tenths of ppm on the 13C NMR
chemical shifts, whereas changing the functional had a larger impact of several ppm.

Inclusion of the implicit solvent effects caused a decrease of the calculated 13C chemical shifts towards the experimental values by about 1 ppm. The effect of molecular motions on the 13C NMR chemical shift in gas-phase C_{70} caused relatively large deshielding contributions of about 2–9 ppm, depending on the method used for averaging. These changes were strongly damped if the solvent was considered in simulation, leading to a deshielding contribution of about 1.2–1.7 ppm only. For the chemical shifts, the changes were largely cancelled by the motional contributions from the C_{60} reference.

Acknowledgements

This work was supported by the Grant Agency of the Czech Republic (203/09/0237, 13-03978S, P208/10/P356, P208/11/0105), Ministry of Education (LH11033), and Czech Academy of Sciences (M200551205).

Notes and references

