Issue 15, 2018

α,β-Unsubstituted meso-positioning thienyl BODIPY: a promising electron deficient building block for the development of near infrared (NIR) p-type donor–acceptor (D–A) conjugated polymers

Abstract

It is demonstrated that α,β-unsubstituted meso-positioning thienyl BODIPY is an electron deficient unit that leads to the development of ultra low optical band gap (Eoptg < 1 eV) π-conjugated D–A quarterthiophene polymers. Furthermore, it is revealed that the optoelectronic, electrochemical and charge transporting properties of the resulting α,β-unsubstituted meso-positioning thienyl BODIPY quaterthiophene-based polymers are alkyl side chain positioning dependent. Tail-to-tail (TT) positioning of the alkyl side chains at the two central thiophenes of the quaterthiophene segment results in lower Eoptg, higher energy levels and increased hole mobility as compared to head-to-head (HH) positioning. Finally, even though the synthesized polymers exhibit high electron affinity, higher even than that of the fullerene derivative [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM), they present only p-type behaviour in field effect transistors (FETs) independent of the alkyl side chain positioning.

Graphical abstract: α,β-Unsubstituted meso-positioning thienyl BODIPY: a promising electron deficient building block for the development of near infrared (NIR) p-type donor–acceptor (D–A) conjugated polymers

Supplementary files

Article information

Article type
Paper
Submitted
22 Dec 2017
Accepted
26 Feb 2018
First published
27 Feb 2018

J. Mater. Chem. C, 2018,6, 4030-4040

α,β-Unsubstituted meso-positioning thienyl BODIPY: a promising electron deficient building block for the development of near infrared (NIR) p-type donor–acceptor (D–A) conjugated polymers

B. M. Squeo, V. G. Gregoriou, Y. Han, A. Palma-Cando, S. Allard, E. Serpetzoglou, I. Konidakis, E. Stratakis, A. Avgeropoulos, T. D. Anthopoulos, M. Heeney, U. Scherf and C. L. Chochos, J. Mater. Chem. C, 2018, 6, 4030 DOI: 10.1039/C7TC05900K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements