Issue 8, 2018

Stretchable electrically conductive and high gas barrier nanocomposites

Abstract

An electrically conductive and stretchable polymer nanocomposite, with high gas barrier behavior, is achieved by depositing trilayers (TL) of polyethylene oxide (PEO), double-walled carbon nanotubes (DWNTs) stabilized with polyacrylic acid (PAA), and graphene oxide (GO) via a layer-by-layer assembly technique. A 40 TL thin film (∼900 nm thick), comprised of this PEO/DWNT-PAA/GO sequence, exhibits an electrical conductivity of 1.3 S cm−1 and a two orders of magnitude reduction in the oxygen transmission rate (OTR) relative to a 1 mm thick polyurethane (PU) rubber substrate. Low temperature thermal reduction of this system further improves the electrical conductivity to 67 S cm−1 and this nanocoating remains crack-free up to 15% strain and maintains a 30 times lower OTR than uncoated polyurethane. This 15% stretch increases resistance by ∼30%. The electrical properties of this unique polymer nanocomposite remain constant after 1000 cycles of bending and twisting. These attributes are provided by the composite's constituents. Elastomeric mechanical properties come from the PEO/PAA layers, electrical conductivity comes from the conjugated network between carbon nanofillers, and the gas barrier is from the GO nanobrick wall structure. This synergistic combination of stretchability, conductivity, and high gas barrier is unprecedented, making this composite interesting for applications in electronics and packaging.

Graphical abstract: Stretchable electrically conductive and high gas barrier nanocomposites

Supplementary files

Article information

Article type
Paper
Submitted
29 Nov 2017
Accepted
22 Jan 2018
First published
22 Jan 2018

J. Mater. Chem. C, 2018,6, 2095-2104

Stretchable electrically conductive and high gas barrier nanocomposites

C. Cho, Y. Song, R. Allen, K. L. Wallace and J. C. Grunlan, J. Mater. Chem. C, 2018, 6, 2095 DOI: 10.1039/C7TC05495E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements