Jump to main content
Jump to site search

Issue 23, 2017
Previous Article Next Article

The impact of aggregation on the p-doping kinetics of poly(3-hexylthiophene)

Author affiliations

Abstract

The morphological effects of regioregular poly(3-hexylthiophene) (P3HT) on its p-doping kinetics with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) in solution are studied using optical absorption spectroscopy and the stopped-flow technique. Two morphological forms, solubilized (s-P3HT) and nanowhiskers (nw-P3HT), are investigated. Both P3HT solubilized and aggregated solutions show similar characteristic near-IR absorption bands for integer charge transfer products with F4-TCNQ. Kinetic analysis on p-doping of s-P3HT with F4-TCNQ indicates that the doping reaction proceeds with a single reaction mechanism that is of first order in s-P3HT. The doping kinetics of P3HT aggregate solution shows two distinctive reaction mechanisms. The slow mechanism has a reaction rate constant similar to that of solubilized P3HT solution, so it likely results from s-P3HT components that are present in the aggregate solution. The fast one is assigned to the nw-P3HT component, probably due to more efficient charge delocalization in the aggregated P3HT nanostructures. Additionally, the kinetic trends of the p-doping reactions are better fitted with the consideration of a Gaussian-like distribution of reactivities from P3HT, matching the complexity of polymeric systems originating from molecular weight and morphology variations. This study highlights the importance of considering different morphological forms of conjugated polymers in their charge-transfer reaction kinetics. The knowledge gained here should be fundamentally and practically important for future chemical doping applications in organic electronic device fabrications.

Graphical abstract: The impact of aggregation on the p-doping kinetics of poly(3-hexylthiophene)

Back to tab navigation

Supplementary files

Publication details

The article was received on 12 Jan 2017, accepted on 15 Mar 2017 and first published on 15 Mar 2017


Article type: Paper
DOI: 10.1039/C7TC00189D
Citation: J. Mater. Chem. C, 2017,5, 5764-5771
  •   Request permissions

    The impact of aggregation on the p-doping kinetics of poly(3-hexylthiophene)

    F. M. McFarland, L. R. Bonnette, E. A. Acres and S. Guo, J. Mater. Chem. C, 2017, 5, 5764
    DOI: 10.1039/C7TC00189D

Search articles by author

Spotlight

Advertisements