Issue 32, 2016

High performance thermoelectric materials and devices based on GeTe

Abstract

Thermoelectric materials have received recent attention due to their ability to convert waste heat to electrical energy directly and reversibly. Inorganic materials, especially Bi2Te3, PbTe and Si–Ge based alloys, have been investigated in the temperature range of 300–1000 K, among which PbTe based materials have been extensively studied, and reported to be the leading thermoelectric materials for mid-temperature power generation. However, environmental concern limits their large scale production due to the toxic nature of Pb. As an alternative, GeTe-rich alloys such as TAGS (GeTe–AgSbTe2) have been largely investigated since the 1960s. Most recently, some of the new materials in the GeTe family have been introduced such as Ge0.87Pb0.13Te, the homologous series of Sb2Te3(GeTe)n and Ge0.9Sb0.1Te, and are reported to exhibit high thermoelectric performance, inherently formed nano and microstructure modulations, and high thermal and mechanical stability. These collective enhanced properties of GeTe-rich alloys have generated great interest in investigating further new GeTe based alloys for intermediate temperature thermoelectric applications. In order to provide the fundamental understanding, technological insights, and to further promote the GeTe based alloys, we hereby present a review on (i) the crystal structure, nano/microstructure, phase transition, electronic structure, and thermoelectric properties of GeTe, (ii) correlation of compositional and microstructure modulations and thermoelectric properties of doped GeTe, TAGS based alloys, Ge–Pb–Te materials, and Ge–Sb–Te materials, (iii) mechanical properties, (iv) past and present devices based on GeTe materials and (v) future directions.

Graphical abstract: High performance thermoelectric materials and devices based on GeTe

Article information

Article type
Review Article
Submitted
17 Jun 2016
Accepted
13 Jul 2016
First published
13 Jul 2016

J. Mater. Chem. C, 2016,4, 7520-7536

High performance thermoelectric materials and devices based on GeTe

S. Perumal, S. Roychowdhury and K. Biswas, J. Mater. Chem. C, 2016, 4, 7520 DOI: 10.1039/C6TC02501C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements