Issue 13, 2014

Panchromatic small molecules for UV-Vis-NIR photodetectors with high detectivity

Abstract

Two donor–acceptor–donor (D–A–D) type low-bandgap small molecules, M1 and M2, with bis(2-thienyl)-N-alkylpyrrole (TPT) as the donor and thieno[3,4-b]thiadiazole (TT) as the acceptor were designed and synthesized. The absorption, transmission, electrochemical, thermal and film properties were studied. The compounds showed panchromatic absorption in the spectral range of 300–1000 nm. Moreover, they also exhibited semi-transparent property in the visible region (400–700 nm). Small molecule photodetectors (SMPDs) based on M1 and M2 were fabricated and studied. For the SMPD with BCP as the hole blocking layer (HBL), a detectivity of 5.0 × 1011 Jones at 800 nm at −0.1 V was obtained, which is among the highest detectivities reported for NIR SMPDs. With a sufficiently thin silver electrode, visibly transparent PDs with an average transmittance of 45% in the visible region were obtained for the first time. The transparent PDs exhibited fairly constant and high detectivity between 1011 and 1012 Jones over a broad spectral range of 300–900 nm. In addition, side chains of the compounds exhibited a great influence on the device performance, which could be assigned to their film absorption coefficient, molecular packing and active layer morphology.

Graphical abstract: Panchromatic small molecules for UV-Vis-NIR photodetectors with high detectivity

Supplementary files

Article information

Article type
Paper
Submitted
18 Nov 2013
Accepted
10 Jan 2014
First published
13 Jan 2014

J. Mater. Chem. C, 2014,2, 2431-2438

Panchromatic small molecules for UV-Vis-NIR photodetectors with high detectivity

J. Qi, L. Ni, D. Yang, X. Zhou, W. Qiao, M. Li, D. Ma and Z. Y. Wang, J. Mater. Chem. C, 2014, 2, 2431 DOI: 10.1039/C3TC32271H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements