Issue 34, 2013

The synthesis of rhodium substituted ε-iron oxide exhibiting super high frequency natural resonance

Abstract

In this study, we demonstrate a synthesis of rhodium substituted ε-iron oxide, ε-RhxFe2−xO3 (0 ≤ x ≤ 0.19), nanoparticles in silica. The synthesis features a sol–gel method to coat the metal hydroxide sol containing Fe3+ and Rh3+ ions with a silica sol via hydrolysis of alkoxysilane to form a composite gel. The obtained samples are barrel-shaped nanoparticles with average long- and short-axial lengths of approximately 30 nm and 20 nm, respectively. The crystallographic structure study using X-ray diffraction shows that ε-RhxFe2−xO3 has an orthorhombic crystal structure in the Pna21 space group. Among the four non-equivalent substitution sites (A–D sites), Rh3+ ions mainly substitute into the C sites. The formation mechanism of ε-RhxFe2−xO3 nanoparticles is considered to be that the large surface area of the nanoparticles increases the contribution from the surface energy to Gibbs free energy, resulting in a different phase, ε-phase, becoming the most stable phase compared to that of bulk or single crystal. The measured electromagnetic wave absorption characteristics due to natural resonance (zero-field ferromagnetic resonance) using terahertz time domain spectroscopy reveal that the natural resonance frequency shifts from 182 GHz (ε-Fe2O3) to 222 GHz (ε-Rh0.19Fe1.81O3) upon rhodium substitution. This is the highest natural resonance frequency of a magnetic material, and is attributed to the large magnetic anisotropy due to rhodium substitution. The estimated coercive field for ε-Rh0.19Fe1.81O3 is as large as 28 kOe.

Graphical abstract: The synthesis of rhodium substituted ε-iron oxide exhibiting super high frequency natural resonance

Supplementary files

Article information

Article type
Paper
Submitted
29 Apr 2013
Accepted
01 Jul 2013
First published
17 Jul 2013
This article is Open Access
Creative Commons BY-NC license

J. Mater. Chem. C, 2013,1, 5200-5206

The synthesis of rhodium substituted ε-iron oxide exhibiting super high frequency natural resonance

A. Namai, M. Yoshikiyo, S. Umeda, T. Yoshida, T. Miyazaki, M. Nakajima, K. Yamaguchi, T. Suemoto and S. Ohkoshi, J. Mater. Chem. C, 2013, 1, 5200 DOI: 10.1039/C3TC30805G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements