Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance upgrade on Thursday 4th of May 2017 from 8.00am to 9.00am (BST).

During this time our websites will be offline temporarily. If you have any questions please use the feedback button on this page. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 5, 2013
Previous Article Next Article

Engineering polydopamine films with tailored behaviour for next-generation eumelanin-related hybrid devices

Author affiliations

Abstract

Eumelanin-type biopolymers have attracted growing interest in the quest for soft bioinspired functional materials for application in organoelectronics. Recently, a metal-insulator-semiconductor device with a good quality interface was produced by spin coating of a commercial synthetic eumelanin-like material on a dry plasma-modified silicon surface. As a proof-of-concept step toward the design and implementation of next-generation eumelanin-inspired devices, we report herein an expedient chemical strategy to bestow n-type performance to polydopamine, a highly popular eumelanin-related biopolymer with intrinsic semiconductor behaviour, and to tune its electrical properties. The strategy relies on aerial co-oxidation of dopamine with suitable aromatic amines, e.g. 3-aminotyrosine or p-phenylenediamine, leading to good quality black polymeric films. Capacitance–voltage experiments on poly(dopamine/3-aminotyrosine) and poly(dopamine/p-phenylenediamine)-based metal insulator semiconductor devices on p-Si indicated a significant increase in flat band voltage with respect to polydopamine and previous synthetic eumelanin-based diodes. Variations of the flat band voltage under vacuum were observed for each device. These results point to polydopamine as a versatile eumelanin-type water-dependent semiconductor platform amenable to fine tuning of its electronic properties through incorporation of π-conjugating aromatic amines to tailor functionality.

Graphical abstract: Engineering polydopamine films with tailored behaviour for next-generation eumelanin-related hybrid devices

Back to tab navigation
Please wait while Download options loads

Supplementary files

Publication details

The article was received on 24 Oct 2012, accepted on 14 Nov 2012 and first published on 14 Nov 2012


Article type: Paper
DOI: 10.1039/C2TC00480A
Citation: J. Mater. Chem. C, 2013,1, 1018-1028
  •   Request permissions

    Engineering polydopamine films with tailored behaviour for next-generation eumelanin-related hybrid devices

    M. Ambrico, P. F. Ambrico, A. Cardone, N. F. Della Vecchia, T. Ligonzo, S. R. Cicco, M. M. Talamo, A. Napolitano, V. Augelli, G. M. Farinola and M. d'Ischia, J. Mater. Chem. C, 2013, 1, 1018
    DOI: 10.1039/C2TC00480A

Search articles by author