Issue 4, 2013

Semi-transparent silver electrodes for flexible electronic devices prepared by nanoimprint lithography

Abstract

The preparation of mechanically flexible and optically transparent electronic circuits plays a key role in the development of next-generation display technologies. Silver nano-gratings are of particular interest due to their excellent conductivity and adjustable transmittance. Printed on polymeric substrates they are suitable for an application in flexible opto-electronic devices. Here, we present the preparation of a smart silver precursor system combining both the ability of cheap and scalable nanoimprint patterning and simple thermal silver reduction. Homogeneous silver line and grid patterns with line widths down to 400 nm are prepared using poly(dimethylsiloxane) stamps in a thermal nanoimprint lithography process. Relatively low process temperatures allow the film formation on polymeric substrates. Semi-transparent silver electrodes with a resistance of 2.8 ohm are patterned on polyimide foils to prepare flexible electro-luminescence devices. A detailed investigation of the precursor's thermal decomposition behaviour as well as the resulting electrical and optical properties of the films is offered.

Graphical abstract: Semi-transparent silver electrodes for flexible electronic devices prepared by nanoimprint lithography

Supplementary files

Article information

Article type
Paper
Submitted
21 Sep 2012
Accepted
12 Nov 2012
First published
13 Nov 2012

J. Mater. Chem. C, 2013,1, 638-645

Semi-transparent silver electrodes for flexible electronic devices prepared by nanoimprint lithography

B. Schumm, F. M. Wisser, G. Mondin, F. Hippauf, J. Fritsch, J. Grothe and S. Kaskel, J. Mater. Chem. C, 2013, 1, 638 DOI: 10.1039/C2TC00247G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements