Issue 26, 2018

Triple phase boundary augmentation in hierarchical, Pt grafted N-doped mesoporous carbon nanofibers for high performance and durable PEM fuel cells

Abstract

Pt-grafted, hierarchical mesoporous carbon nanofibers (Pt/MPCNFs) electrocatalysts have been developed using electrospinning for high-performance PEM fuel cells. The morphological analysis of Pt/MPCNFs revealed uniformly dispersed Pt nanoparticles (2–3 nm) strongly grafted onto the hierarchical nanochannels of mesoporous carbon nanofibers (MPCNFs). Pyridinic and pyrrolic nitrogen species formed in the sp2 graphitic structure during the carbonization process of the MPCNFs have been found to play a major role in augmentation of the triple phase boundaries in the catalyst support materials. Pt/MPCNFs exhibited outstanding electrocatalytic performance towards the oxygen reduction reaction (ORR) with a positively shifted onset potential (54 mV), half-wave potential (78 mV) and high limiting current density (4.75 mA cm−2 at 0.4 V) compared to state-of-the-art Pt/C electrocatalysts in acidic medium and they exhibited superior long-term stability (89.8% retention after 30 000 s and less change in activity after 10 000 potential sweeps). Pt/MPCNFs as a cathode catalyst yielded a maximum power density of 428.6 mW cm−2 during single cell testing, which is 2.08 times higher than a commercial Pt/C electrocatalyst. The electrochemical performance evaluation clearly implied that the unique combination of ultrathin nanofibers with a three-dimensional mesoporous structure, high electrical conductivity, enhanced specific surface area, homogeneous dispersion of Pt nanocatalysts and the presence of optimal nitrogen doping offers superior electrocatalytic activity via a favorable four-electron pathway and long-term operating stability during repeated cycles. Performance analysis in a single PEM fuel cell shows twice the power density (428 mW cm−2) with Pt/MPCNFs compared to commercial electrocatalyst membranes due to the effective enhancement in the triple phase boundaries, indicating that Pt/MPCNFs are potential candidates for high-performance, durable PEMFCs.

Graphical abstract: Triple phase boundary augmentation in hierarchical, Pt grafted N-doped mesoporous carbon nanofibers for high performance and durable PEM fuel cells

Supplementary files

Article information

Article type
Paper
Submitted
14 Mar 2018
Accepted
11 Jun 2018
First published
12 Jun 2018

J. Mater. Chem. A, 2018,6, 12768-12781

Triple phase boundary augmentation in hierarchical, Pt grafted N-doped mesoporous carbon nanofibers for high performance and durable PEM fuel cells

K. K. Karuppanan, Appu V. Raghu, M. K. Panthalingal, S. Ramanathan, T. Kumaresan and B. Pullithadathil, J. Mater. Chem. A, 2018, 6, 12768 DOI: 10.1039/C8TA02391C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements