Issue 20, 2018

Synthesis of MoS2 from [Mo3S7(S2CNEt2)3]I for enhancing photoelectrochemical performance and stability of Cu2O photocathode toward efficient solar water splitting

Abstract

Cu2O is a typical p-type semiconductor that can efficiently absorb visible light and has a high absorption coefficient due to its narrow forbidden band. Thus, it finds potential applications in solar energy conversion and photocatalysis. However, Cu2O photocathodes suffer from a major issue of chemical stability and sluggish proton reduction for splitting water using sunlight. We present here a facile method of coating a thin MoS2 layer onto Cu2O to significantly improve its stability and proton reduction efficiency. MoS2 coating on top of Cu2O is achieved by spin coating a [Mo3S7(S2CNEt2)3]I precursor combined with a thermal annealing process to obtain the optimal stoichiometry. MoS2 thin films synthesized using this method show good prospects as both a protection layer and an electrocatalyst for hydrogen evolution reactions (HER) due to excellent stability and high electrocatalytic activity. The proton reduction performance of spin-coated MoS2/FTO electrodes is studied to determine the optimal synthesis conditions using various derivatives of MoS2 precursors. Our study suggests that the rate-limiting kinetic step of MoS2 synthesized in this method is the desorption of adsorbed hydrogen atoms to form molecular hydrogen, and that nanocrystalline MoS2 with copiously exposed S edges are more active for HER. Photoelectrochemical measurements demonstrate the highest activity for 3-layered (<40 nm thick) MoS2/Cu2O photocathode fabricated at 450 °C with a photocurrent density of ∼6.5 mA cm−2 at −0.2 V vs. RHE. Additionally, the MoS2 coating helps minimize the dark current of the Cu2O photocathode.

Graphical abstract: Synthesis of MoS2 from [Mo3S7(S2CNEt2)3]I for enhancing photoelectrochemical performance and stability of Cu2O photocathode toward efficient solar water splitting

Supplementary files

Article information

Article type
Paper
Submitted
22 Feb 2018
Accepted
01 May 2018
First published
01 May 2018

J. Mater. Chem. A, 2018,6, 9569-9582

Author version available

Synthesis of MoS2 from [Mo3S7(S2CNEt2)3]I for enhancing photoelectrochemical performance and stability of Cu2O photocathode toward efficient solar water splitting

P. S. Shinde, P. R. Fontenot, J. P. Donahue, J. L. Waters, P. Kung, L. E. McNamara, N. I. Hammer, A. Gupta and S. Pan, J. Mater. Chem. A, 2018, 6, 9569 DOI: 10.1039/C8TA01771A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements