Issue 43, 2017

Hexagonal prism-like hierarchical Co9S8@Ni(OH)2 core–shell nanotubes on carbon fibers for high-performance asymmetric supercapacitors

Abstract

In this work, novel hierarchical cobalt sulfide@nickel hydroxide [Co9S8@Ni(OH)2] core–shell nanotube arrays supported on carbon fibers have been designed logically and synthesized for use as supercapacitors. The one-dimensional Co9S8 nanotubes (NTs) serve as an ideal backbone to improve the electrical conductivity of Ni(OH)2 nanosheets, whereas the ultrathin and redox active Ni(OH)2 nanosheets electrodeposited on the Co9S8 NTs greatly enhance the surface area and provide more electroactive sites for faradaic reaction. The optimized Co9S8@Ni(OH)2 electrode shows high specific capacitances of 149.44 mA h g−1 at the current density of 1 A g−1 and 75 mA h g−1 even at 10 A g−1. An asymmetric supercapacitor was successfully assembled with this unique hybrid nanostructure as the anode and an active carbon film as the cathode. The as-fabricated device shows high energy density (31.35 W h kg−1 at 252.8 W kg−1), high power density (2500 W kg−1 at 12.5 W h kg−1), as well as a long-term cycle stability (97.3% retention of its initial capacitance after 5000 cycles). The as-prepared hierarchical nanostructure shows great potential as a promising electrode material for energy storage applications.

Graphical abstract: Hexagonal prism-like hierarchical Co9S8@Ni(OH)2 core–shell nanotubes on carbon fibers for high-performance asymmetric supercapacitors

Supplementary files

Article information

Article type
Paper
Submitted
14 Aug 2017
Accepted
05 Oct 2017
First published
06 Oct 2017

J. Mater. Chem. A, 2017,5, 22782-22789

Hexagonal prism-like hierarchical Co9S8@Ni(OH)2 core–shell nanotubes on carbon fibers for high-performance asymmetric supercapacitors

F. Zhu, M. Yan, Y. Liu, H. Shen, Y. Lei and W. Shi, J. Mater. Chem. A, 2017, 5, 22782 DOI: 10.1039/C7TA07160D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements