Issue 18, 2017

Core/shell-structured hyperbranched aromatic polyamide functionalized graphene nanosheets-poly(p-phenylene benzobisoxazole) nanocomposite films with improved dielectric properties and thermostability

Abstract

This study reports the synthesis of core/shell-structured hyperbranched aromatic polyamide functionalized graphene nanosheets-poly(p-phenylene benzobisoxazole) (GNs-HAP-PBO) nanocomposite films with improved dielectric properties and thermostability. PBO precursor polymer chains were grafted onto the ample amino-terminated GNs-HAP via in situ polymerization, and then the reduction of GNs-HAP and the intramolecular cyclization of PBO precursors were achieved through thermal treatment. The unique core/shell-structure is effective to prevent the aggregation of GNs and improves the dispersion of GNs in the GNs-HAP-PBO nanocomposites, forming microcapacitor networks in the matrix. The GNs-HAP-PBO nanocomposite films exhibit lower dielectric loss in comparison with solvothermally reduced graphene oxide/PBO nanocomposite films. At 1 kHz and 200 °C, a dielectric constant of 66.27 and a dielectric loss of 0.045 are observed in the GNs-HAP-PBO nanocomposite films with 2 wt% GNs-HAP. Moreover, the maximum energy density of the GNs-HAP-PBO nanocomposite films is up to 6 J cm−3 owing to the high breakdown strength (132.5 ± 9.3 kV mm−1). The GNs-HAP-PBO nanocomposite films with 2 wt% GNs-HAP also exhibit excellent tensile strength (125 MPa), Young's modulus (6.4 GPa), and high thermal stability (temperature of 5 wt% loss = 643 °C). This work demonstrates a promising strategic approach to fabricating high dielectric materials under extreme environments.

Graphical abstract: Core/shell-structured hyperbranched aromatic polyamide functionalized graphene nanosheets-poly(p-phenylene benzobisoxazole) nanocomposite films with improved dielectric properties and thermostability

Supplementary files

Article information

Article type
Paper
Submitted
18 Jan 2017
Accepted
03 Apr 2017
First published
03 Apr 2017

J. Mater. Chem. A, 2017,5, 8705-8713

Core/shell-structured hyperbranched aromatic polyamide functionalized graphene nanosheets-poly(p-phenylene benzobisoxazole) nanocomposite films with improved dielectric properties and thermostability

H. Feng, W. Ma, Z. Cui, X. Liu, J. Gu, S. Lin and Q. Zhuang, J. Mater. Chem. A, 2017, 5, 8705 DOI: 10.1039/C7TA00587C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements