Issue 44, 2016

Plasticization resistant crosslinked polyurethane gas separation membranes

Abstract

Polyurethanes (PUs) with good film formation ability and high gas separation properties are promising materials for gas separation membranes. However, low mechanical properties and high CO2 plasticization limit the industrial application of these membranes. Here, we synthesized a crosslinkable PU structure using a 1 : 3 : 2 molar ratio of Pluronic L61, isophorone diisocyanate (IPDI) and 3,5-diaminobenzoic acid (DABA). In order to improve both mechanical properties and plasticization resistance, a series of crosslinking agents with different chain lengths and functionalities were used to crosslink the PU via an esterification-based reaction. Pure (H2, CO2, N2, CH4, and C2H6) and mixed (CO2/N2 and CO2/CH4) gas permeability experiments were performed on the crosslinked PU (XPU) membranes. The XPU membranes showed enhanced mechanical properties and chemical stability and improved plasticization resistance to an extent about three times higher than the non-crosslinked PU and commercial membranes (PEBAX® 2533). Mechanical tests indicated an improvement of over 600% in Young's modulus and 200% in hardness for XPUs compared to the pristine PU. The resulting crosslinked membranes with high CO2 separation performance (CO2/N2 ∼ 30) and superior thermal and mechanical properties are attractive candidates for industrial separation processes.

Graphical abstract: Plasticization resistant crosslinked polyurethane gas separation membranes

Supplementary files

Article information

Article type
Paper
Submitted
09 Sep 2016
Accepted
10 Oct 2016
First published
10 Oct 2016

J. Mater. Chem. A, 2016,4, 17431-17439

Plasticization resistant crosslinked polyurethane gas separation membranes

A. P. Isfahani, B. Ghalei, K. Wakimoto, R. Bagheri, E. Sivaniah and M. Sadeghi, J. Mater. Chem. A, 2016, 4, 17431 DOI: 10.1039/C6TA07820F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements