Issue 24, 2015

Intelligent rubber with tailored properties for self-healing and shape memory

Abstract

A strategy for combining covalent and non-covalent cross-links to construct multifunctional rubber materials with intelligent self-healing and shape memory ability is demonstrated. Rubbers were prepared by self-assembly of complementary polybutadiene oligomers bearing carboxylic acid and amine groups through reversible ionic hydrogen bonds via the acid–base reaction, and then further covalently cross-linked by tri-functional thiol via the thiol-ene reaction. The resulting polymers exhibit self-healing and shape memory functions owing to the reversible ionic hydrogen bonds. The covalent cross-linking density can be tuned to achieve tailorable mechanical and stimuli-responsive properties: a low covalent cross-linking density maintains the remarkable self-healing capability of rubber at ambient temperature without any external stimulus, while a high covalent cross-linking density improves the mechanical strength and induces shape memory behavior, but effective self-healing needs to be triggered at high temperature. This strategy might open a promising pathway to fabricate intelligent multifunctional polymers with versatile functions.

Graphical abstract: Intelligent rubber with tailored properties for self-healing and shape memory

Supplementary files

Article information

Article type
Paper
Submitted
16 Mar 2015
Accepted
08 May 2015
First published
11 May 2015

J. Mater. Chem. A, 2015,3, 12864-12872

Author version available

Intelligent rubber with tailored properties for self-healing and shape memory

D. Wang, J. Guo, H. Zhang, B. Cheng, H. Shen, N. Zhao and J. Xu, J. Mater. Chem. A, 2015, 3, 12864 DOI: 10.1039/C5TA01915J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements