Issue 35, 2013

ZnO–ionic liquid hybrid films: electrochemical synthesis and application in dye-sensitized solar cells

Abstract

An innovative ionic liquid (IL)-based synthesis route was developed to obtain ZnO-based hybrid nanostructured films with a modified surface. In particular, ZnO–IL hybrid films, with thickness from 1.5 to 4.5 μm and an appealing sponge-like morphology, were obtained from the electrochemical reduction of NO3 in ionic liquid-based electrolytes containing Zn2+. The presence of the ionic liquid moieties and/or derivatives in the as-deposited films was demonstrated by Fourier transform infra-red spectroscopy and energy dispersive X-ray spectroscopy. However, a relatively soft thermal annealing (i.e. 1 hour in air at 350 °C) was proved to be an effective way to remove the ionic liquid content from the samples, leading to porous ZnO films with high specific surface area. In comparison to ionic liquid-free samples, a blue shift of ∼40 meV in the absorption onset is detected for the ZnO-PYR14TFSI hybrid films, which suggests a modification of the bandgap. Both kind of films (i.e. ZnO–IL and ZnO) were sensitized with an indoline dye, coded D358, and evaluated as photoanodes in Dye-sensitized Solar Cells (DSCs). Although less D358 was adsorbed onto ZnO–IL samples (suggesting co-adsorption of the IL and D358), a clear enhancement (by a factor of ca. 2) of the power conversion efficiency was detected in DSC based on ZnO–IL hybrid films. This improvement was mainly due to a huge increase (∼180 mV) in the photovoltage, which reaches values of up to 780 mV. The DSC characterization, by electrochemical impedance spectroscopy and open circuit voltage decay techniques, indicates that the photovoltage improvement is likely due to a negative displacement of the conduction band in hybrid films. Therefore, the use of metal oxide–IL hybrid anodes appears to be a promising strategy to increase the open circuit voltage of the DSCs.

Graphical abstract: ZnO–ionic liquid hybrid films: electrochemical synthesis and application in dye-sensitized solar cells

Supplementary files

Article information

Article type
Paper
Submitted
10 Apr 2013
Accepted
04 Jun 2013
First published
04 Jun 2013

J. Mater. Chem. A, 2013,1, 10173-10183

ZnO–ionic liquid hybrid films: electrochemical synthesis and application in dye-sensitized solar cells

E. Azaceta, J. Idigoras, J. Echeberria, A. Zukal, L. Kavan, O. Miguel, H. Grande, J. A. Anta and R. Tena-Zaera, J. Mater. Chem. A, 2013, 1, 10173 DOI: 10.1039/C3TA11443K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements