Issue 27, 2013

Flexible aerogels based on an interpenetrating network of bacterial cellulose and silica by a non-supercritical drying process

Abstract

Flexible and crack-free bacterial cellulose (BC)–silica composite aerogels (CAs) are prepared through a sol–gel process followed by freeze drying, in which the BC matrix and silica gel skeleton form an interpenetrating network microstructure. The BC–silica CAs exhibit low density (0.02 g cm−3), high specific surface area (734.1 m2 g−1) and low thermal conductivity (0.031 W m−1 K−1), almost the same as pure silica aerogels. Due to the synergic effects of the BC matrix and silica gel skeleton, the obtained CAs show excellent robustness and flexibility which overcome the inherent fragility of traditional inorganic aerogels. Furthermore, the dried CAs can withstand a huge capillary force and keep their integrity and flexibility even upon being immersed in a liquid phase again. Hence, the CAs can be functionalized conveniently in a liquid phase to extend their applications. The hydrophobization modified CAs have potential to be used as adsorbents for water purification and show excellent oil absorption capability on the surface of water, and can be removed from water conveniently.

Graphical abstract: Flexible aerogels based on an interpenetrating network of bacterial cellulose and silica by a non-supercritical drying process

Supplementary files

Article information

Article type
Paper
Submitted
25 Mar 2013
Accepted
02 May 2013
First published
03 May 2013

J. Mater. Chem. A, 2013,1, 7963-7970

Flexible aerogels based on an interpenetrating network of bacterial cellulose and silica by a non-supercritical drying process

H. Sai, L. Xing, J. Xiang, L. Cui, J. Jiao, C. Zhao, Z. Li and F. Li, J. Mater. Chem. A, 2013, 1, 7963 DOI: 10.1039/C3TA11198A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements