Issue 22, 2013

A bioplastic with high strength constructed from a cellulose hydrogel by changing the aggregated structure

Abstract

The direct use of cellulose to fabricate materials such as common plastics as synthetic polymers has hardly been investigated. In the present paper, bioplastics of a new class are constructed, for the first time, by hot-pressing cellulose hydrogel, and are different from common plastics in terms of their processability. The cellulose hydrogels were prepared from cellulose solution in an alkali hydroxide/urea aqueous system with cooling by physical cross-linking. Due to the removal of cellulose molecules in the hydrogel state, the hot-pressing induced a transition in the aggregated structure in the cellulose bioplastics, leading to a plastic deformation. The results from 13C NMR, SEM, and FT-IR confirmed that a radial orientation of cellulose molecules occurred in the planar direction of the plate, whereas an increase of amorphous zones appeared in the vertical direction. The resulting cellulose bioplastics were transparent, as a result of the uniformly orientated structure. Moreover, the cellulose bioplastic exhibited much higher tensile strength, flexural strength and thermal stability as well as a lower coefficient of thermal expansion than common plastics and regenerated cellulose films. The whole life cycle assessment showed that the cellulose bioplastic is an environmentally friendly material. This work opens up a completely new avenue to construct a valuable bioplastic directly from cellulose pulps rather than their derivatives.

Graphical abstract: A bioplastic with high strength constructed from a cellulose hydrogel by changing the aggregated structure

Supplementary files

Article information

Article type
Paper
Submitted
20 Mar 2013
Accepted
22 Mar 2013
First published
22 Mar 2013

J. Mater. Chem. A, 2013,1, 6678-6686

A bioplastic with high strength constructed from a cellulose hydrogel by changing the aggregated structure

Q. Wang, J. Cai, L. Zhang, M. Xu, H. Cheng, C. C. Han, S. Kuga, J. Xiao and R. Xiao, J. Mater. Chem. A, 2013, 1, 6678 DOI: 10.1039/C3TA11130J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements