Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance upgrade on Thursday 4th of May 2017 from 8.00am to 9.00am (BST).

During this time our websites will be offline temporarily. If you have any questions please use the feedback button on this page. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 4, 2013
Previous Article Next Article

Self-doping inspired zwitterionic pendant design of radical polymers toward a rocking-chair-type organic cathode-active material

Author affiliations

Abstract

‘Self-doping’ inspired high-density redox copolymers were designed and prepared via free radical copolymerization of 2,2,6,6-tetramethyl-4-piperidyl methacrylate and vinylsulfonic acid (VSA) with a view to preventing a change in salt concentration during the one-electron oxidation of the nitroxide radicals to N-oxoammonium cations in a polymer layer. A copolymer composition of TEMPO–sulfonate anionic group = 1/1 for density-maximized charge neutralization was achieved by controlling the feed ratio of the copolymerization. The formation of copolymers was evidenced by 2D nuclear Overhauser enhanced spectroscopy (NOESY) and diffusion ordered spectroscopy (DOSY) NMR. Poly(TEMPO methacrylate-stat-VSA) was considered to have the alternating tendency due to the acid–base interaction in the comonomers, which were supported not only by the single crystal structure of the 2,2,6,6-tetramethyl-4-piperidyl methacrylate and VSA complex, but also by the 1H–1H correlation in NOE signals. In an aqueous electrolyte with 0.5 M NaCl, the copolymer electrode showed a redox response near 0.66 V (vs. Ag/AgCl), and the excellent cycle performance during 1000 cycles. During the one-electron oxidation of the nitroxide radical, anionic sulfonate groups led to charge compensation of the N-oxoammonium cation. Consequently, the copolymer electrode exhibited the cation migration, which was evidenced by mass-transfer analysis using an electrochemical quartz crystal microbalance (EQCM) technique. The copolymer could be applied as an aqueous electrolyte-type organic rechargeable device. Moreover, this design proposes the ultimate principle toward the strategy of maximizing energy density in organic charge storage devices.

Graphical abstract: Self-doping inspired zwitterionic pendant design of radical polymers toward a rocking-chair-type organic cathode-active material

Back to tab navigation
Please wait while Download options loads

Supplementary files

Publication details

The article was received on 22 Oct 2012, accepted on 13 Nov 2012 and first published on 13 Nov 2012


Article type: Paper
DOI: 10.1039/C2TA00785A
Citation: J. Mater. Chem. A, 2013,1, 1326-1333
  •   Request permissions

    Self-doping inspired zwitterionic pendant design of radical polymers toward a rocking-chair-type organic cathode-active material

    I. S. Chae, M. Koyano, K. Oyaizu and H. Nishide, J. Mater. Chem. A, 2013, 1, 1326
    DOI: 10.1039/C2TA00785A

Search articles by author