Issue 9, 2018

Solvent-free and biocompatible multiphased organic–inorganic hybrid nanocomposites

Abstract

Biocompatible chemically cross-linked organic–inorganic (O–I) hybrid nanocomposites were developed using a new atoxic, simple and fast, solvent-free pathway. Poly(ε-caprolactone) (PCL) and poly(ethylene glycol) (PEG), which are both biocompatible, were used as the organic moieties (at different PCL/PEG ratios), while in situ synthesized polysilsesquioxanes made up the inorganic moiety. The O–I hybrid nanocomposites’ molecular structures were characterized using solid-state 29Si NMR, TGA and ATR-IR. Results showed an unusually high condensation yield of approximately 90% and two distinct silsesquioxane structures. No traces of the remaining isocyanate groups were found. Advanced morphological characterization of the ternary O–I hybrids was performed using a combination of electron microscopy and X-ray scattering techniques such as SEM, TEM, ESI-TEM, WAXS and temperature-dependent SAXS. Results showed the occurrence of spherical nanoparticles, associated with polysilsesquioxane, and ordered network grains, associated with PCL and/or PEG chains cross-linked by silsesquioxane cages. As a consequence, a four-phased nanostructured morphology was proposed. In this model, PCL and PEG are undistinguishable, while polysilsesquioxane nanoparticles are uniformly distributed throughout a homogeneous cross-linked matrix, which shows gel-like behavior. Moreover, a mobile phase made up of unbound polymer chains occurs at the grain interface.

Graphical abstract: Solvent-free and biocompatible multiphased organic–inorganic hybrid nanocomposites

Supplementary files

Article information

Article type
Paper
Submitted
28 Dec 2017
Accepted
30 Jan 2018
First published
31 Jan 2018

Soft Matter, 2018,14, 1709-1718

Solvent-free and biocompatible multiphased organic–inorganic hybrid nanocomposites

L. C. E. da Silva, L. G. L. Germiniani, T. S. Plivelic and M. C. Gonçalves, Soft Matter, 2018, 14, 1709 DOI: 10.1039/C7SM02547E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements