Issue 40, 2017

Carbohydrate-based block copolymer systems: directed self-assembly for nanolithography applications

Abstract

Self-assembly of block copolymers (BCPs) provides an attractive nanolithography approach, which looks especially promising for fabrication of regular structures with characteristic sizes below 10 nm. Nevertheless, directed self-assembly (DSA) and pattern transfer for BCPs with such small features remain to be a challenge. Here we demonstrate DSA of the maltoheptaose-block-polystyrene (MH1,2k-b-PS4,5k) BCP system using graphoepitaxy. BCP thin films were self-organized by solvent vapor annealing in tetrahydrofuran (THF) and water into sub-10 nm scale cylinders of the maltoheptaose (MH) block oriented horizontally or perpendicularly to the surface in a polystyrene (PS) matrix. The guiding patterns for graphoepitaxy were made by the electron beam lithography (EBL) and lift-off process with the distance gradually varying between 0 and 200 nm. Atomic force microscopy (AFM) investigation of MH1,2k-b-PS4,5k BCP DSA patterns revealed good ordering of vertical and horizontal cylindrical MH arrays for DSA lines with 150–200 nm separation. Reactive ion etching (RIE) of MH1,2k and PS4,5k thin films in O2 and CF4 plasma showed up to 14 times higher etch rate of MH compared to PS. These results indicate that MH1,2k-b-PS4,5k is a promising BCP for nanolithographic applications below 10 nm.

Graphical abstract: Carbohydrate-based block copolymer systems: directed self-assembly for nanolithography applications

Article information

Article type
Paper
Submitted
18 Jul 2017
Accepted
12 Sep 2017
First published
12 Sep 2017

Soft Matter, 2017,13, 7406-7411

Carbohydrate-based block copolymer systems: directed self-assembly for nanolithography applications

I. Otsuka, N. Nilsson, D. B. Suyatin, I. Maximov and R. Borsali, Soft Matter, 2017, 13, 7406 DOI: 10.1039/C7SM01429E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements