Issue 42, 2015

Hierarchical assembly may be a way to make large information-rich structures

Abstract

Self-assembly in the laboratory can now yield ‘information-rich’ nanostructures in which each component is of a distinct type and has a defined spatial position. Ensuring the thermodynamic stability of such structures requires inter-component interaction energies to increase logarithmically with structure size, in order to counter the entropy gained upon mixing component types in solution. However, self-assembly in the presence of strong interactions results in general in kinetic trapping, so suggesting a limit to the size of an (equilibrium) structure that can be self-assembled from distinguishable components. Here we study numerically a two-dimensional hierarchical assembly scheme already considered in experiment. We show that this scheme is immune to the kinetic traps associated with strong ‘native’ interactions (interactions designed to stabilize the intended structure), and so, in principle, offers a way to make large information-rich structures. In this scheme the size of an assembled structure scales exponentially with the stage of assembly, and assembly can continue as long as random motion is able to bring structures into contact. The resulting superstructure could provide a template for building in the third dimension. The chief drawback of this scheme is that it is particularly susceptible to kinetic traps that result from ‘non-native’ interactions (interactions not required to stabilize the intended structure); the scale on which such a scheme can be realized therefore depends upon how effectively this latter kind of interaction can be suppressed.

Graphical abstract: Hierarchical assembly may be a way to make large information-rich structures

Article information

Article type
Paper
Submitted
03 Jun 2015
Accepted
03 Sep 2015
First published
03 Sep 2015

Soft Matter, 2015,11, 8225-8235

Author version available

Hierarchical assembly may be a way to make large information-rich structures

S. Whitelam, Soft Matter, 2015, 11, 8225 DOI: 10.1039/C5SM01375E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements