Issue 30, 2015

Velocity statistics of dynamic spinners in out-of-equilibrium magnetic suspensions

Abstract

We report on the velocity statistics of an out-of-equilibrium magnetic suspension in a spinner phase confined at a liquid interface. The suspension is energized by a uniaxial alternating magnetic field applied parallel to the interface. In a certain range of the magnetic field parameters the system spontaneously undergoes a transition into a dynamic spinner phase (ensemble of hydrodynamically coupled magnetic micro-rotors) comprised of two subsystems: self-assembled spinning chains and a gas of rotating single particles. Both subsystems coexist in a dynamic equilibrium via continuous exchange of the particles. Spinners excite surface flows that significantly increase particle velocity correlations in the system. For both subsystems the velocity distributions are strongly non-Maxwellian with nearly exponential high-energy tails, P(v) ∼ exp(−|v/v0|). The kurtosis, the measure of the deviation from the Gaussian statistics, is influenced by the frequency of the external magnetic field. We show that in the single-particle gas the dissipation is mostly collisional, whereas the viscous damping dominates over collisional dissipation for the self-assembled spinners. The dissipation increases with the frequency of the applied magnetic field. Our results provide insights into non-trivial dissipation mechanisms determining self-assembly processes in out-of-equilibrium magnetic suspensions.

Graphical abstract: Velocity statistics of dynamic spinners in out-of-equilibrium magnetic suspensions

Supplementary files

Article information

Article type
Paper
Submitted
13 May 2015
Accepted
25 Jun 2015
First published
25 Jun 2015

Soft Matter, 2015,11, 6055-6061

Author version available

Velocity statistics of dynamic spinners in out-of-equilibrium magnetic suspensions

A. Snezhko and I. S. Aranson, Soft Matter, 2015, 11, 6055 DOI: 10.1039/C5SM01163A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements