Issue 3, 2015

Effects of protonation on foaming properties of dodecyldimethylamine oxide solutions: a pH-study

Abstract

The critical micelle concentration (cmc), the surface excess (Γ), as well as the micelle aggregation number (m) of the surfactant dodecyldimethylamine oxide (C12DMAO) have been reported to strongly depend on the pH-value of the aqueous surfactant solution. At high ionic strength, the cmc displays a minimum, while both Γ and m have a maximum at a pH-value close to the pKa of the surfactant. These experimental observations have been explained as being due to specific hydrogen bonds between the head groups, which are formed once the surfactant is partly or fully protonated. This investigation addresses the question of whether the pH also affects the foaming properties of C12DMAO solutions. To answer this question we measured the foamability and the foam stability of C12DMAO solutions at a fixed C12DMAO concentration of 5 cmc for five different pH-values, namely pH = 2, 3, 5, 8, and 10. We found that the foamability is hardly affected by the pH-value, while the foam stability strongly depends on the pH. As is the case for the above mentioned properties, the foam stability also displays an extremum in the studied pH-range, namely a maximum at pH = 5. We discuss our results in terms of the hydrogen bond hypothesis and show that this hypothesis indeed is in line with the observed trend for the foam stability. Moreover, we discuss that hydrogen bond formation may rationalize how the molecular structure of a surfactant affects foam stability.

Graphical abstract: Effects of protonation on foaming properties of dodecyldimethylamine oxide solutions: a pH-study

Supplementary files

Article information

Article type
Paper
Submitted
07 Nov 2014
Accepted
17 Nov 2014
First published
26 Nov 2014

Soft Matter, 2015,11, 561-571

Effects of protonation on foaming properties of dodecyldimethylamine oxide solutions: a pH-study

K. Schellmann, N. Preisig, P. Claesson and C. Stubenrauch, Soft Matter, 2015, 11, 561 DOI: 10.1039/C4SM02476A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements