Issue 40, 2013

Enabling efficient energy barrier computations of wetting transitions on geometrically patterned surfaces

Abstract

Proper roughness design is important in realizing surfaces with fully tunable wetting properties. Engineering surface roughness boils down to an energy barrier optimization problem, in which the geometric features of roughness serve as the optimization parameters. Computations of energy barriers, separating admissible equilibrium wetting states on patterned surfaces, have been demonstrated utilizing fine-scale simulators (e.g., lattice-Boltzmann for mesoscale and molecular dynamics for microscale simulations), however with substantial computational requirements. Here, by solving an augmented Young–Laplace equation with a disjoining pressure term, we demonstrate accurate and efficient computations of equilibrium shapes of entire millimeter sized droplets on patterned surfaces. In particular, by adopting a natural parameterization of the Young–Laplace equation along the liquid/air and liquid/solid interfaces, the tedious implementation of the Young's contact angle boundary condition at multiple three phase contact lines is bypassed. We, thus, enable the computation of wetting transition energy barriers, separating the well-known Cassie–Baxter and Wenzel states, as well as intermediate states, but with negligible computational cost. We demonstrate the method's efficiency by computing the equilibrium of droplets on stripe-patterned surfaces, and compare the results with mesoscopic lattice Boltzmann simulations. Our computationally efficient continuum-level analysis can be readily applied to patterned surfaces with increased and unstructured geometric complexity, and straightforwardly coupled with shape optimizers towards the design of surfaces with desirable wetting behaviour.

Graphical abstract: Enabling efficient energy barrier computations of wetting transitions on geometrically patterned surfaces

Supplementary files

Article information

Article type
Paper
Submitted
16 May 2013
Accepted
30 Jul 2013
First published
14 Aug 2013

Soft Matter, 2013,9, 9624-9632

Enabling efficient energy barrier computations of wetting transitions on geometrically patterned surfaces

N. T. Chamakos, M. E. Kavousanakis and A. G. Papathanasiou, Soft Matter, 2013, 9, 9624 DOI: 10.1039/C3SM51377G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements