Issue 27, 2012

Exploring thermal reversible hydrogels for stem cell expansion in three-dimensions

Abstract

In this study, we report the application of a biocompatible thermo-reversible hydrogel, made from thermo-sensitive poly(N-isopropylacrylamide-co-acrylic acid) (P(NIPAM-AA)) microgels, for expanding stem cells in three-dimensions (3-D). The P(NIPAM-AA) microgels were synthesized by emulsion polymerization with their thermo-responsive phase transition behaviors being examined by light scattering and rheological methods. The viability of the microgel-exposed C3H/10T1/2 cells compared to the control cells is close to 100%, indicating the non-cytotoxicity of the synthesized microgels. At 37 °C, rheological measurements reveal the formation of hydrogels from 30 mg mL−1 microgel dispersions. The cross-sectional morphologies of the hydrogels show the interconnected porous structure. The 3-D stem cell culture system can be achieved by heating the microgel and cell mixtures to 37 °C. The increase of the viable stem cells cultured suggests that the in situ formed hydrogels support stem cell proliferation. The recovery of the 3-D cultured stem cells can be easily accomplished by cooling the culture system to room temperature. The released 3-D cultured cells can further adhere to a 2-D substrate, implying that the cultured stem cells are not only alive, but also retain the capability of migration. Therefore, the in situ formed thermo-reversible P(NIPAM-AA) hydrogels can be employed to expand stem cells in 3-D for further applications in tissue engineering.

Graphical abstract: Exploring thermal reversible hydrogels for stem cell expansion in three-dimensions

Supplementary files

Article information

Article type
Paper
Submitted
22 Feb 2012
Accepted
13 May 2012
First published
11 Jun 2012

Soft Matter, 2012,8, 7250-7257

Exploring thermal reversible hydrogels for stem cell expansion in three-dimensions

Z. Shen, J. Bi, B. Shi, D. Nguyen, C. J. Xian, H. Zhang and S. Dai, Soft Matter, 2012, 8, 7250 DOI: 10.1039/C2SM25407G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements