Issue 20, 2012

Lubricant evolution and depletion under laser heating: a molecular dynamics study

Abstract

Understanding the performance of polymeric perfluoro-lubricants under femtosecond laser irradiation is of great fundamental importance in enhancing the stability and durability of micro- and nano-devices. In this paper, molecular dynamics simulations of perfluoropolyether are carried out to investigate the evolution and depletion of molecularly thin lubricants when subjected to laser heating. Ultrathin perfluoropolyether lubricant films are modeled by the coarse-grained bead-spring model and are coated on an inert substrate. Periodical surface morphology and layered film structure are formed in the equilibrium lubricant system due to the polar interaction of functional beads. It is found that the lubricant undergoes severe depletion with an increase in laser heating duration, resulting in aggravated lubricant evaporation and raised ridges. A temperature gradient is formed in the radial direction due to the heat transfer between the heated beads and the surrounding lubricants. During the cooling process, the strong functional interaction between end-beads and the substrate layer hinders the recovery and redistribution of depleted lubricant beads, resulting in an undersaturated film. The mechanism of lubricant depletion under laser heating is further demonstrated by analyzing the temperature dependence of surface tension. The detailed analyses of lubricant depletion provided in the present work are expected to be guidelines to design novel perfluoropolyether lubricants.

Graphical abstract: Lubricant evolution and depletion under laser heating: a molecular dynamics study

Article information

Article type
Paper
Submitted
08 Dec 2011
Accepted
15 Mar 2012
First published
16 Apr 2012

Soft Matter, 2012,8, 5649-5657

Lubricant evolution and depletion under laser heating: a molecular dynamics study

Y. Li, C. H. Wong, B. Li, S. Yu, W. Hua and W. Zhou, Soft Matter, 2012, 8, 5649 DOI: 10.1039/C2SM07326A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements