Issue 6, 2012

Remotely triggered release from composite hydrogel sponges

Abstract

A thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) hydrogel crosslinked with methylene bisacrylamide (MBA), with the ability to undergo a volume change of approximately 50%, was used to fabricate a hydrogel “sponge” with oil microdrops encapsulated within its structure by the polymerization of an O/W emulsion. By adding 1.5 wt.% of iron oxide nanoparticles to the hydrogel structure it is possible to trigger the hydrogel volume change remotely by exposing the composite to an alternating magnetic field in the radiofrequency range, which heats up the nanoparticles. The increase of the hydrogel temperature leads to its shrinking and subsequently the encapsulated oil droplets are squeezed out. It was shown that the oil is released gradually during cyclic volume change (repeated heating and cooling) and the amount of oil content released during the first 8–15 shrinking cycles was in the range 1–3% v/v per cycle. The total amount of the released oil phase was in the range 18–24% v/v and it was found to be affected by the size of the encapsulated microdroplets, with the larger ones being squeezed out preferentially.

Graphical abstract: Remotely triggered release from composite hydrogel sponges

Article information

Article type
Paper
Submitted
09 Sep 2011
Accepted
08 Nov 2011
First published
21 Dec 2011

Soft Matter, 2012,8, 1811-1816

Remotely triggered release from composite hydrogel sponges

A. Zadražil, V. Tokárová and F. Štěpánek, Soft Matter, 2012, 8, 1811 DOI: 10.1039/C1SM06707A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements