Issue 7, 2011

Human macrophage adhesion on polysaccharide patterned surfaces

Abstract

Despite many advances in designing biocompatible materials, inflammation remains a problem in medical devices and implants. We report two methods, microcontact printing and photodegradation by UV exposure, to pattern dextran and hyaluronic acid on glass, as well as demonstrate their utility for use as an anti-inflammatory biomaterial. The dextran/glass patterned surface can be further modified by grafting hyaluronic acid to glass, creating a binary polysaccharide patterned surface. We used two geometries, 90 μm squares and 22 μm stripes, to study the human macrophage (THP-1) adhesion on the patterned surfaces containing dextran, hyaluronic acid and the binary pattern. The results indicate that a majority of the macrophages are non-adherent on hyaluronic acid for three day culture. The ranking of surfaces according to macrophage adhesion is 3-aminopropyltriethoxysilane-modified glass culture dish, dextranized surfaces, glass, and hyaluronic acid-modified surfaces. On the binary pattern of dextran and hyaluronic acid, macrophages preferentially attach and adhere to the dextranized area. Patterned surfaces provide an excellent platform for mimicking the complexity of the glycocalyx and investigating the interface between this surface and cells. This binary polysaccharide pattern also offers a new route to address anti-inflammatory potential of surface coatings on biomaterials in a high through-put fashion.

Graphical abstract: Human macrophage adhesion on polysaccharide patterned surfaces

Article information

Article type
Paper
Submitted
21 Nov 2010
Accepted
01 Feb 2011
First published
23 Feb 2011

Soft Matter, 2011,7, 3599-3606

Human macrophage adhesion on polysaccharide patterned surfaces

I. Y. Tsai, C. Kuo, N. Tomczyk, S. J. Stachelek, R. J. Composto and D. M. Eckmann, Soft Matter, 2011, 7, 3599 DOI: 10.1039/C0SM01353F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements