Issue 6, 2009

Nanoparticleassembly for 1D and 2D ordered structures

Abstract

The skill to use new synthetic routes to assemble nanoparticles (NPs) into advanced architectures for specific functions is a big challenge for the researchers. Controlled morphologies designed for generating 1-dimensional (1D) and 2-dimensional (2D) structures inspired by nature are one of the hot topics in nanoscience. The unique properties of individual nanocrystals upon assembly also provide the opportunity to modulate or enhance the overall behavior of the nanomaterials. New synthetic approaches will be discussed to explore the ability of the NP (metallic, semiconductor and magnetic) assembly in various highly ordered superstructures. The mechanism of NP assembly (non-covalent or covalent) with itself or by targeting polymers and biomolecules as linkers will also be illustrated. The topics will include new methods for construction of 1D nanowires and 2D nanosheets by spontaneous dipole–dipole interactions, air–water interface assembly and specific interactions using polymer and bio-templates. Use of polymers as templates for generating arrays of NPs or biomolecules (for investigating the intrinsic behavior of DNA or proteins in the assembly) opens the possibility of designing novel devices and hybrid materials. Once the desired superstructures have been fabricated and characterized, the corresponding materials can be further investigated for optical, magnetic, electronic and sensor applications.

Graphical abstract: Nanoparticle assembly for 1D and 2D ordered structures

Article information

Article type
Review Article
Submitted
06 Oct 2008
Accepted
24 Dec 2008
First published
03 Feb 2009

Soft Matter, 2009,5, 1146-1156

Nanoparticle assembly for 1D and 2D ordered structures

S. Srivastava and N. A. Kotov, Soft Matter, 2009, 5, 1146 DOI: 10.1039/B812115J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements