Jump to main content
Jump to site search

Issue 12, 2015
Previous Article Next Article

Pushing NMR sensitivity limits using dynamic nuclear polarization with closed-loop cryogenic helium sample spinning

Author affiliations

Abstract

We report a strategy to push the limits of solid-state NMR sensitivity far beyond its current state-of-the-art. The approach relies on the use of dynamic nuclear polarization and demonstrates unprecedented DNP enhancement factors for experiments performed at sample temperatures much lower than 100 K, and can translate into 6 orders of magnitude of experimental time-savings. This leap-forward was made possible thanks to the employment of cryogenic helium as the gas to power magic angle sample spinning (MAS) for dynamic nuclear polarization (DNP) enhanced NMR experiments. These experimental conditions far exceed what is currently possible and allows currently reaching sample temperatures down to 30 K while conducting experiments with improved resolution (thanks to faster spinning frequencies, up to 25 kHz) and highly polarized nuclear spins. The impressive associated gains were used to hyperpolarize the surface of an industrial catalyst as well as to hyperpolarize organic nano-assemblies (self-assembling peptides in our case), for whom structures cannot be solved using diffraction techniques. Sustainable cryogenic helium sample spinning significantly enlarges the realm and possibilities of the MAS-DNP technique and is the route to transform NMR into a versatile but also sensitive atomic-level characterization tool.

Graphical abstract: Pushing NMR sensitivity limits using dynamic nuclear polarization with closed-loop cryogenic helium sample spinning

Back to tab navigation

Publication details

The article was received on 31 Jul 2015, accepted on 26 Aug 2015 and first published on 26 Aug 2015


Article type: Edge Article
DOI: 10.1039/C5SC02819A
Citation: Chem. Sci., 2015,6, 6806-6812
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    Pushing NMR sensitivity limits using dynamic nuclear polarization with closed-loop cryogenic helium sample spinning

    E. Bouleau, P. Saint-Bonnet, F. Mentink-Vigier, H. Takahashi, J.-F. Jacquot, M. Bardet, F. Aussenac, A. Purea, F. Engelke, S. Hediger, D. Lee and G. De Paëpe, Chem. Sci., 2015, 6, 6806
    DOI: 10.1039/C5SC02819A

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements