Issue 12, 2014

The proton conduction mechanism in a material consisting of packed acids

Abstract

Proton conduction due to acid–acid interactions is an important topic in a variety of fields, from materials science to biochemistry. We observed a distinctive proton conduction phenomenon for a material consisting of packed acids at the interface of zirconium sulphophenylphosphonate (ZrSPP) and sulphonated poly(arylene ether sulphone) (SPES). The proton in the composite was found to be active, while water, a general proton carrier, remained immobile. Moreover, the conductivity of the composite material was higher than the sum of the individual conductivities of ZrSPP and SPES, which can be attributed to the packed acids present at the interface. We propose a “packed-acid mechanism” based on the results of ab initio calculations in order to explain such a significant and interesting behaviour of protons. During common proton conduction, pseudo-shuttling of a proton between a proton donor and acceptor is a general event that disrupts the reorientation phenomenon, which is an important process associated with common proton conduction. Based on our results, it could be inferred that in packed acid materials, the acid–acid interaction eliminates the pseudo-shuttling (interception) and facilitates reorientation, resulting in successive proton conduction.

Graphical abstract: The proton conduction mechanism in a material consisting of packed acids

Supplementary files

Article information

Article type
Edge Article
Submitted
01 Apr 2014
Accepted
12 Aug 2014
First published
14 Aug 2014

Chem. Sci., 2014,5, 4878-4887

Author version available

The proton conduction mechanism in a material consisting of packed acids

T. Ogawa, T. Aonuma, T. Tamaki, H. Ohashi, H. Ushiyama, K. Yamashita and T. Yamaguchi, Chem. Sci., 2014, 5, 4878 DOI: 10.1039/C4SC00952E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements