Issue 2, 2014

Directional charge transfer and highly reducing and oxidizing excited states of new dirhodium(ii,ii) complexes: potential applications in solar energy conversion

Abstract

Two new series of dirhodium(II,II) complexes cis-[Rh2(μ-DTolF)2(L)2][BF4]2 and cis-[Rh2(μ-F-form)2(L)2][BF4]2 were synthesized and fully characterized (DTolF = p-ditolylformamidinate, F-form = p-difluorobenzylformamidinate; L = the chelating diimine ligands dpq (dipyrido[3,2-f:2′,3′-h]quinoxaline), dppz (dipyrido[3,2-a:2′,3′-c]phenazine) and dppn (benzo[i]dipyrido[3,2-a:2′,3′-h]quinoxaline). The complexes undergo facile oxidation and exhibit directed ligand-to-ligand charge transfer (LLCT) excited states upon excitation from the corresponding formamidinate to the diimine ligand. Time-resolved studies reveal that the LLCT states decay with lifetimes that range from 16 to 100 ps and generate a longer-lived excited state. For complexes with dpq and dppz ligands, the longer-lived excited state, with lifetimes that range from 40 to 100 ns, has been assigned as 3MC (MC = metal-centered) arising from the Rh2(π*) → Rh2(σ*) transition. In the case of cis-[Rh2(μ-DTolF)2(dppn)2]2+ and cis-[Rh2(μ-F-form)2(dppn)2]2+, the dppn-centered 3ππ* excited state is observed from ∼10 ps to ∼2 ns, but following its decay, the 3MC state of each complex is observed with lifetimes of 2.4 and 3.0 μs, respectively. The long lifetimes observed for the dppn complexes is explained by a pre-equilibrium of the low-lying 3ππ* and 3MC states. The excited state oxidation potentials, E*ox(1LLCT), for the complexes are calculated to lie between −2.5 and −2.8 V vs. SCE and E*ox(3MC) ∼ −1.8 V vs. SCE. The 1LLCT excited states of the complexes are also good oxidizing agents, with E*red(1LLCT) ∼ +1.3 V vs. SCE, making them significantly better oxidizing and reducing agents than commonly used Ru(II) complexes.

Graphical abstract: Directional charge transfer and highly reducing and oxidizing excited states of new dirhodium(ii,ii) complexes: potential applications in solar energy conversion

Supplementary files

Article information

Article type
Edge Article
Submitted
23 Aug 2013
Accepted
14 Oct 2013
First published
15 Oct 2013

Chem. Sci., 2014,5, 727-737

Directional charge transfer and highly reducing and oxidizing excited states of new dirhodium(II,II) complexes: potential applications in solar energy conversion

Z. Li, N. A. Leed, N. M. Dickson-Karn, K. R. Dunbar and C. Turro, Chem. Sci., 2014, 5, 727 DOI: 10.1039/C3SC52366G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements