Issue 3, 2013

Uncovering f-element bonding differences and electronic structure in a series of 1 : 3 and 1 : 4 complexes with a diselenophosphinate ligand

Abstract

Understanding the bonding trends within, and the differences between, the 4f and 5f element series with soft donor atom ligands will aid elucidation of the fundamental origins of actinide (An) versus lanthanide (Ln) selectivity that is integral to many advanced nuclear fuel cycle separation concepts. One of the principal obstacles to acquiring such knowledge is the dearth of well characterized transuranic molecules that prevents the necessary comparison of 4f versus 5f coordination chemistry, electronic structure, and bonding. Reported herein is new chemistry of selenium analogues of dithiophosphinate actinide extractants. LnIII and AnIII/IV complexes with the diselenophosphinate [Se2PPh2] anion have been synthesized, structurally and spectroscopically characterized, and quantum chemical calculations performed on model compounds in which the phenyl rings have been replaced by methyl groups. The complexes [LnIII(Se2PPh2)3(THF)2] (Ln = La (1), Ce (2), Nd (3)), [LaIII(Se2PPh2)3(MeCN)2] (4), [PuIII(Se2PPh2)3(THF)2] (5), [Et4N][MIII(Se2PPh2)4] (M = Ce (6), Pu (7)), and [AnIV(Se2PPh2)4] (An = U (8), Np (9)), represent the first f-element diselenophosphinates. In conjunction with the calculated models, complexes 1–9 were utilized to examine two important factors: firstly, bonding trends/differences between trivalent 4f and 5f cations of near identical ionic radii; secondly, bonding trend differences across the 5f series within the AnIV oxidation state. Analysis of both experimental and computational data supports the conclusion of enhanced covalent bonding contributions in PuIII–Se versus CeIII–Se bonding, while differences between UIV–Se and NpIV–Se bonding is satisfactorily accounted for by changes in the strength of ionic interactions as a result of the increased positive charge density on NpIV compared to UIV ions. These findings improve understanding of soft donor ligand binding to the f-elements, and are of relevance to the design and manipulation of f-element extraction processes.

Graphical abstract: Uncovering f-element bonding differences and electronic structure in a series of 1 : 3 and 1 : 4 complexes with a diselenophosphinate ligand

Supplementary files

Article information

Article type
Edge Article
Submitted
22 Oct 2012
Accepted
23 Nov 2012
First published
10 Jan 2013
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry

Chem. Sci., 2013,4, 1189-1203

Uncovering f-element bonding differences and electronic structure in a series of 1 : 3 and 1 : 4 complexes with a diselenophosphinate ligand

M. B. Jones, A. J. Gaunt, J. C. Gordon, N. Kaltsoyannis, M. P. Neu and B. L. Scott, Chem. Sci., 2013, 4, 1189 DOI: 10.1039/C2SC21806B

This is an Open Access article. The full version of this article can be posted on a website/blog, posted on an intranet, photocopied, emailed, distributed in a course pack or distributed in Continuing Medical Education (CME) materials provided that it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements