Issue 7, 2012

Pb(ii) metal–organic nanotubes based on cyclodextrins: biphasic synthesis, structures and properties

Abstract

Two chiral lead metal–organic nanotubes (CD-MONT-2 and CD-MONT-3) based on β-cyclodextrin (β-CD) and γ-cyclodextrin (γ-CD) were synthesized through a biphasic solvothermal reaction. The lead ions were connected by two β-CD or γ-CD molecules through their glycosidic oxygen atoms to generate a discrete metal–organic nanotube containing a {Pb14} or {Pb16} metallamacrocycle, respectively. Guest solvents of cyclohexanol molecules were trapped in the cavity of the β-CD-based nanotube, whereas there were no solvents in the cavity of the γ-CD-based nanotube. These differences directly led to the formation of different 3D packing structures. Their properties including temperature-dependent photoluminescence, adsorption of I2 molecules and thermal-decomposition behaviors were studied.

Graphical abstract: Pb(ii) metal–organic nanotubes based on cyclodextrins: biphasic synthesis, structures and properties

Supplementary files

Article information

Article type
Edge Article
Submitted
14 Feb 2012
Accepted
18 Apr 2012
First published
18 Apr 2012

Chem. Sci., 2012,3, 2282-2287

Pb(II) metal–organic nanotubes based on cyclodextrins: biphasic synthesis, structures and properties

Y. Wei, D. Sun, D. Yuan, Y. Liu, Y. Zhao, X. Li, S. Wang, J. Dou, X. Wang, A. Hao and D. Sun, Chem. Sci., 2012, 3, 2282 DOI: 10.1039/C2SC20187A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements