Issue 6, 2012

Formation of uncapped nanometre-sized metal particles by decomposition of metal carbonyls in carbon nanotubes

Abstract

Carbonyl complexes of transition metals (Mx(CO)y, where x = 1, 2, or 3 and y = 6, 10, or 12 for M = W, Re, or Os, respectively) inserted into single walled carbon nanotubes (SWNT, diameter 1.5 nm) transform into metallic nanoparticles (MNPs) under heat treatment or electron beam irradiation. The host-nanotube acts as an efficient template, controlling the growth of MNPs to ∼1 nm in diameter. The only co-product of nanoparticle formation, carbon monoxide (CO) gas, creates pockets of high pressure between nanoparticles, thus preventing their collision and coalescence into larger structures. As a result, the MNPs stay largely spheroidal in shape and are uniformly distributed throughout the entire length of the SWNT. Despite their extremely small size (on average each MNP contains 30–90 atoms) and no protection of their surface by a capping layer of molecules, the metallic nanoparticles encapsulated in nanotubes are very stable under ambient conditions and even at elevated temperatures. Aberration-corrected high-resolution transmission electron microscopy reveals the crystalline nature of the MNPs, probes their interactions with the nanotube interior and illustrates the complex dynamics of confined MNPs in real-time and direct-space.

Graphical abstract: Formation of uncapped nanometre-sized metal particles by decomposition of metal carbonyls in carbon nanotubes

Supplementary files

Article information

Article type
Edge Article
Submitted
06 Dec 2011
Accepted
23 Mar 2012
First published
26 Mar 2012

Chem. Sci., 2012,3, 1919-1924

Formation of uncapped nanometre-sized metal particles by decomposition of metal carbonyls in carbon nanotubes

T. W. Chamberlain, T. Zoberbier, J. Biskupek, A. Botos, U. Kaiser and A. N. Khlobystov, Chem. Sci., 2012, 3, 1919 DOI: 10.1039/C2SC01026G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements