Issue 4, 2012

Efficient gene delivery into cells by a surprisingly small three-armed peptide ligand

Abstract

The development of new non-viral transfection vectors for gene transport into cells is of current interest. A small, three-armed peptide ligand 1 is derived from the cationic dipeptide Lys-Phe with an additional anion recognition site at its N-terminus, binds to DNA with high affinity (K ca. 107 M−1) and efficiently delivers a GFP plasmid into cells. Compared to the cationic polymer polyethyleneimine (PEI), routinely used as a standard vector for transfection, 1 is significantly more efficient and also less cytotoxic. As DLS and AFM studies show, ligand 1 condenses DNA into tightly packed cationic aggregates which are then taken up by the cells. In contrast, the analogous divalent peptide ligand 2 of identical amino acid sequence and the highly charged divalent DNA-binder 3 (Lys-Lys-Arg) do not enable gene delivery though they also bind with high affinity (2: K ca. 106 M−1; 3: K ca. 107 M−1). All three ligands are able to transfer genetic material into cells but only the trivalent gene carrier is able to escape from the endosome due to its superior buffering capacity.

Graphical abstract: Efficient gene delivery into cells by a surprisingly small three-armed peptide ligand

Supplementary files

Article information

Article type
Edge Article
Submitted
01 Dec 2011
Accepted
17 Jan 2012
First published
18 Jan 2012

Chem. Sci., 2012,3, 996-1002

Efficient gene delivery into cells by a surprisingly small three-armed peptide ligand

H. Y. Kuchelmeister, A. Gutschmidt, S. Tillmann, S. Knauer and C. Schmuck, Chem. Sci., 2012, 3, 996 DOI: 10.1039/C2SC01002J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements