Issue 3, 2017

Cooperative learning in organic chemistry increases student assessment of learning gains in key transferable skills

Abstract

Science and engineering educators and employers agree that students should graduate from college with expertise in their major subject area as well as the skills and competencies necessary for productive participation in diverse work environments. These competencies include problem-solving, communication, leadership, and collaboration, among others. Using a pseudo-experimental design, and employing a variety of data from exam scores, course evaluations, and student assessment of learning gains (SALG) surveys of key competencies, we compared the development of both chemistry content knowledge and transferable or generic skills among students enrolled in two types of large classes: a lecture-based format versus an interactive, constructive, cooperative learning (flipped classroom) format. Controlling for instructor, as well as laboratory and recitation content, students enrolled in the cooperative learning format reported higher learning gains than the control group in essential transferable skills and competency areas at the end of the term, and more growth in these areas over the course of the term. As a result of their work in the class, the two groups of students reported the most significant differences in their gains in the following areas: “interacting productively to solve problems with a diverse group of classmates,” “behaving as an effective leader,” “behaving as an effective teammate,” and “comfort level working with complex ideas.” Our findings clearly show that cooperative learning course designs allow students to practice and develop the transferable skills valued by employers.

Supplementary files

Article information

Article type
Paper
Submitted
11 Jan 2017
Accepted
10 Feb 2017
First published
10 Feb 2017

Chem. Educ. Res. Pract., 2017,18, 441-456

Cooperative learning in organic chemistry increases student assessment of learning gains in key transferable skills

D. A. Canelas, J. L. Hill and A. Novicki, Chem. Educ. Res. Pract., 2017, 18, 441 DOI: 10.1039/C7RP00014F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements