Issue 103, 2016, Issue in Progress

Carbon dioxide activation and transformation to HCOOH on metal clusters (M = Ni, Pd, Pt, Cu, Ag & Au) anchored on a polyaniline conducting polymer surface – an evaluation study by hybrid density functional theory

Abstract

Developing new efficient catalysts for the electrochemical reduction of carbon dioxide to formic acid is important in the process of mitigating environmental CO2. In the present work, we have designed metal (M) clusters anchored on a polyaniline (PANI) conducting polymer electrode (M@PANI), where, M = Ni, Pd, Pt, Cu, Ag & Au, and evaluated their potential catalytic activity towards CO2 reduction by means of computational hydrogen electrode using hybrid density functional theory methods. The predicted binding energy and electronic properties of M@PANI suggest a thermodynamically feasible reaction which retains its conducting property with enhancement. The modified electrodes favour the formation of HCOOH involving H*COO species via the formate pathway. The computed limiting potentials suggest that Cu@PANI is a suitable electrode material for the CO2 reduction reaction leading to HCOOH.

Graphical abstract: Carbon dioxide activation and transformation to HCOOH on metal clusters (M = Ni, Pd, Pt, Cu, Ag & Au) anchored on a polyaniline conducting polymer surface – an evaluation study by hybrid density functional theory

Supplementary files

Article information

Article type
Paper
Submitted
17 Aug 2016
Accepted
17 Oct 2016
First published
18 Oct 2016

RSC Adv., 2016,6, 100829-100840

Carbon dioxide activation and transformation to HCOOH on metal clusters (M = Ni, Pd, Pt, Cu, Ag & Au) anchored on a polyaniline conducting polymer surface – an evaluation study by hybrid density functional theory

R. Shanmugam, A. Thamaraichelvan, T. K. Ganesan and B. Viswanathan, RSC Adv., 2016, 6, 100829 DOI: 10.1039/C6RA20715D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements