Issue 103, 2016

Organic thin-film transistors fabricated using a slot-die-coating process and related sensing applications

Abstract

We herein present the results of a study involving the fabrication of semiconductor thin films for organic thin-film transistors (OTFTs) composed of a small molecular 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-PEN) composite blended with a polymer binder of poly(α-methylstyrene) (PaMS), i.e., TIPS-PEN:PaMS. Thin TIPS-PEN:PaMS semiconducting films were effectively produced using a simple slot-die-coating process operating in a dip-coating mode. It is shown that the slot-die-coating process used here allows critical control of the thickness of the TIPS-PEN:PaMS film; nanoscale thin films could be produced using the downstream meniscus of the blended solution at speeds of the order of a few meters per minute. It is also shown that the slot-die-coated TIPS-PEN:PaMS OTFTs exhibited maximum field-effect mobility of 0.33 cm2 V−1 s−1 and on/off ratios which exceeded 105, both of which are superior to those of conventional spin-cast devices. We also provide an example of an application of the slot-die-coated OTFTs to demonstrate that the OTFTs investigated here can be used to operate a protein sensor device. Considering these results, we believe that the slot-die-coating method with the blended composite of TIPS-PEN:PaMS shows considerable promise for the high-throughput production of reliable, reproducible, and high-performance OTFTs.

Graphical abstract: Organic thin-film transistors fabricated using a slot-die-coating process and related sensing applications

Article information

Article type
Paper
Submitted
21 Jul 2016
Accepted
20 Oct 2016
First published
20 Oct 2016

RSC Adv., 2016,6, 101613-101621

Organic thin-film transistors fabricated using a slot-die-coating process and related sensing applications

B. Park, I. Bae, O. E. Kwon and H. G. Jeon, RSC Adv., 2016, 6, 101613 DOI: 10.1039/C6RA18545B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements