Issue 47, 2015

Structural and magnetic properties of GaN/Mn nanopowders prepared by an anaerobic synthesis route

Abstract

A new oxygen-free molecular precursor system based on (i) ammonolysis in refluxing/liquid NH3 of selected mixtures of gallium tris(dimethyl)amide Ga(NMe2)3 and manganese bis(trimethylsilyl)amide Mn[N(SiMe3)2]2 (Me = CH3, initial Mn-contents = 0.1, 5, 20, 50 at.%) followed by (ii) pyrolysis under flowing ammonia gas at 500, 700, and 900 °C afforded a range of nanocrystalline powders in the GaN/Mn system. The nanopowders were characterized mainly by powder XRD diffraction, FT-IR spectroscopy, Raman spectroscopy, SEM/EDX morphology examination, and XRF elemental analysis. Magnetization measurements as a function of magnetic field and temperature were carried out with a SQUID magnetometer. Structurally, the materials were shown to be single-phases based on the gallium nitride lattice. The presence of small quantities of residual amorphous Mn/N/Si/C species due to an incomplete transamination/removal of the trimethylsilylamide groups during ammonolysis was deduced from the XRF, FT-IR, Raman, and magnetization data. Magnetic properties for all nanopowders consistently pointed to a paramagnetic GaMnN phase with antiferromagnetic interactions among Mn-centers that under favorable circumstances reached the level of 3.8 at.% Mn. The paramagnetic phase was accompanied by a residual antiferromagnetic phase due to a facile oxidation in air of excessive Mn-containing by-products.

Graphical abstract: Structural and magnetic properties of GaN/Mn nanopowders prepared by an anaerobic synthesis route

Associated articles

Article information

Article type
Paper
Submitted
13 Feb 2015
Accepted
16 Apr 2015
First published
16 Apr 2015

RSC Adv., 2015,5, 37298-37313

Author version available

Structural and magnetic properties of GaN/Mn nanopowders prepared by an anaerobic synthesis route

M. Drygas, J. F. Janik, M. M. Bucko, J. Gosk and A. Twardowski, RSC Adv., 2015, 5, 37298 DOI: 10.1039/C5RA02831K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements