Issue 89, 2014

Mesoporous poly-melamine-formaldehyde stabilized palladium nanoparticle (Pd@mPMF) catalyzed mono and double carbonylation of aryl halides with amines

Abstract

A new mesoporous poly-melamine-formaldehyde material supported Pd nano catalyst (mPMF–Pd0) has been synthesized and characterized by thermogravimetric analysis (TGA), powder X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), high-resolution transmission electron microscopy (HRTEM), UV-vis diffuse reflection spectroscopy (DRS), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and a N2 adsorption study. The mPMF–Pd0 material showed very good catalytic activity in the field of mono and double amino carbonylation of aryl bromides/iodides. Moreover, the catalyst is easily recoverable and can be reused six times without appreciable loss of catalytic activity in the above reactions. So, the highly dispersed and strongly bound palladium(0) sites in the mPMF–Pd0 could be responsible for the observed high activities. Due to strong binding with the functional groups of the polymer, no evidence of leached Pd from the catalyst during the course of reaction occurred, suggesting true heterogeneity in the catalytic process.

Graphical abstract: Mesoporous poly-melamine-formaldehyde stabilized palladium nanoparticle (Pd@mPMF) catalyzed mono and double carbonylation of aryl halides with amines

Supplementary files

Article information

Article type
Paper
Submitted
24 Jul 2014
Accepted
22 Sep 2014
First published
23 Sep 2014

RSC Adv., 2014,4, 48177-48190

Author version available

Mesoporous poly-melamine-formaldehyde stabilized palladium nanoparticle (Pd@mPMF) catalyzed mono and double carbonylation of aryl halides with amines

R. A. Molla, Md. A. Iqubal, K. Ghosh, A. S. Roy, Kamaluddin and Sk. M. Islam, RSC Adv., 2014, 4, 48177 DOI: 10.1039/C4RA07554D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements