Jump to main content
Jump to site search

Issue 12, 2012
Previous Article Next Article

Simple one-pot fabrication of ultra-stable core-shell superparamagnetic nanoparticles for potential application in drug delivery

Author affiliations

Abstract

Ultrastable superparamagnetic core-shell nanoparticles of average diameter 80 nm have been fabricated via a simple one-pot method involving superparamagnetic iron oxide nanoparticles (SPIONs) core (∼50 nm in diameter) and lipid bilayer shell by high energy ultrasonication. The surface charges (zeta potentials) were measured to be between −15 mV and + 16 mV depending on the batch composition. Anticancer drug mitomycin C (MMC) was loaded into four different samples of variable surface charges in aqueous solution (pH = 6.8) and released in PBS buffer (pH = 7.2) at room temperature. The kinetics of drug loading and releasing data indicated that the stable lipid bilayer coated SPIONs (LBCSPIONs) of nearly neutral surface exhibited the highest loading (10.9 μg of MMC/mg of materials), whereas uncoated or partially coated SPIONs of positive zeta potential exhibited the lowest loading (2.8 and 3.5 μg MMC/mg of materials, respectively). The release behavior of MMC was observed to be highest (5.8 μg MMC/mg of materials) from materials of negative zeta potential compared to materials of near neutral surfaces (3.68 μg MMC/mg of materials). The plausible mechanism of MMC loading and releasing behavior has been explained based on the electrostatic interaction and diffusion through the lipid bilayers. To ensure biocompatibility, the interaction of the prepared SPIONs with human cervical cancer cell line (HeLa) was also investigated using an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and ROS (reactive oxygen species) production assay and the results confirmed the super-compatibility of LBCSPIONs.

Graphical abstract: Simple one-pot fabrication of ultra-stable core-shell superparamagnetic nanoparticles for potential application in drug delivery

Back to tab navigation

Supplementary files

Publication details

The article was received on 03 Feb 2012, accepted on 28 Mar 2012 and first published on 29 Mar 2012


Article type: Paper
DOI: 10.1039/C2RA20199B
Citation: RSC Adv., 2012,2, 5221-5228
  •   Request permissions

    Simple one-pot fabrication of ultra-stable core-shell superparamagnetic nanoparticles for potential application in drug delivery

    T. Sen, S. J. Sheppard, T. Mercer, M. Eizadi-sharifabad, M. Mahmoudi and A. Elhissi, RSC Adv., 2012, 2, 5221
    DOI: 10.1039/C2RA20199B

Search articles by author

Spotlight

Advertisements