Issue 18, 2012

The influence of ionic liquid on phase separation of poly(N-isopropylacrylamide) aqueous solution

Abstract

The role of ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF4]), on the phase transition behavior of concentrated PNIPAM solutions was investigated by FTIR spectroscopy in combination with two-dimensional correlation spectroscopy (2Dcos) and the perturbation correlation moving window (PCMW) technique for the first time. At low IL concentrations, the Tp of the PNIPAM solution decreases with increases in the IL concentration, due to the destabilization of the hydrated macromolecule structure via preferential interactions between IL and water molecules. However, at higher IL concentrations, unexpectedly, the phase transition behavior disappears. This has been attributed to the formation of a stable interaction network via intra- and intermolecular hydrogen bonding. Furthermore, two changes can be observed in the ν(C–H) region for the sample with 0.4 mol L−1 [Bmim][BF4]. The first change is related to the phase separation of the PNIPAM solution, while the second step is attributed to an IL–D2O association, which takes part in the globule construction, probably interacting with hydrophilic groups of PNIPAM. Thus, the role of ILs on the phase behavior of PNIPAM is embodied in two opposite aspects, the “destroyer” and the “constructer”.

Graphical abstract: The influence of ionic liquid on phase separation of poly(N-isopropylacrylamide) aqueous solution

Supplementary files

Article information

Article type
Paper
Submitted
22 Dec 2011
Accepted
30 May 2012
First published
06 Jul 2012

RSC Adv., 2012,2, 7099-7108

The influence of ionic liquid on phase separation of poly(N-isopropylacrylamide) aqueous solution

Z. Wang and P. Wu, RSC Adv., 2012, 2, 7099 DOI: 10.1039/C2RA01349E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements