Issue 2, 2011

Polymerization of an activated ester monomer based on 4-vinylsulfonic acid and its polymer analogous reaction

Abstract

Homopolymers containing sulfonic ester side groups were synthesized by reversible addition–fragmentation chain transfer (RAFT) polymerization utilizing benzyl dithiobenzoate, cumyl dithiobenzoate, and 4-cyano-4-((thiobenzoyl)sulfanyl)pentanoic acid as chain transfer agents. Likewise diblock copolymers containing poly(styrene), poly(octylstyrene) and poly(pentafluorostyrene) as the second block were synthesized. Additionally, nitroxide mediated polymerization (NMP) was investigated for the synthesis of a homopolymer as well as for a diblock copolymer. Furthermore, the post-polymerization functionalization with various amines to yield the respective sulfonamides was conducted. The conversion was analyzed by 1H NMR spectroscopy, 19F NMR spectroscopy and FT-IR spectroscopy and in many cases a very high conversion (>96%) was observed. In addition the reaction kinetics of the post-polymerization functionalization of poly(pentafluorophenyl 4-vinylbenzene sulfonate) and the corresponding carboxyl ester poly(pentafluorophenyl 4-vinylbenzoate) were compared by analysis of the reactions by time-resolved 19F NMR spectroscopy. It was found that poly(pentafluorophenyl 4-vinylbenzoate) showed a higher stability towards hydrolysis and a significantly higher reactivity, resulting in complete conversions with different amines.

Graphical abstract: Polymerization of an activated ester monomer based on 4-vinylsulfonic acid and its polymer analogous reaction

Supplementary files

Article information

Article type
Paper
Submitted
17 Aug 2010
Accepted
23 Sep 2010
First published
15 Oct 2010

Polym. Chem., 2011,2, 376-384

Polymerization of an activated ester monomer based on 4-vinylsulfonic acid and its polymer analogous reaction

K. Nilles and P. Theato, Polym. Chem., 2011, 2, 376 DOI: 10.1039/C0PY00261E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements