Issue 20, 1996

Chymotrypsin inhibitory conformation induced by amino acid side chain–side chain intramolecular CH/π interaction

Abstract

Dipeptide amides H-D-Leu-Phe-NH-R have been found to assume a conformation induced by the CH/π interaction and to inhibit chymotrypsin strongly. A series of benzyl amide derivatives H-D-Leu-Phe-NH-[CH2]n-C6H5(n= 0–4) have been assayed for chymotrypsin. They inhibit the enzyme in a competitive manner and the highest inhibition is achieved by the amide of n= 1 (Ki= 3.6 × 10–6M). The activity enhancement is dependent upon the length of methylene chain, not upon the increase in molecular hydrophobicity, indicating the presence of an optimal distance between dipeptide backbone and C-terminal phenyl group for chymotrypsin inhibition. The C-terminal phenyl group has been found to interact with chymotrypsin stereospecifically. The R-isomer of H-D-Leu-Phe-NH-CH(CH3)-C6H5 is as active as the benzyl amide, while the S-isomer is about twenty-fold less active. When the fluorine atom is introduced at a para-position of the C-terminal phenyl group, the resulting dipeptide H-D-Leu-Phe-NH-CH2-C6H4F-p exhibits about six-times increased inhibitory activity (Ki= 6.1 × 10–7M; this dipeptide is one of the most potent chymotrypsin inhibitors to date). 1H NMR conformational analyses of these dipeptide amide derivatives show the CH/π interaction between D-Leu-isobutyl and Phe-phenyl as a key structural element for chymotrypsin inhibition. These structural examinations strongly suggest that in the inhibitory conformation the C-terminal phenyl group fits the chymotrypsin S1 site, while the hydrophobic core constructed by D-Leu-Phe CH/π interaction fits the chymotrypsin S2 or S1′ site.

Article information

Article type
Paper

J. Chem. Soc., Perkin Trans. 1, 1996, 2479-2485

Chymotrypsin inhibitory conformation induced by amino acid side chain–side chain intramolecular CH/π interaction

Y. Shimohigashi, I. Maeda, T. Nose, K. Ikesue, H. Sakamoto, T. Ogawa, Y. Ide, M. Kawahara, T. Nezu, Y. Terada, K. Kawano and M. Ohno, J. Chem. Soc., Perkin Trans. 1, 1996, 2479 DOI: 10.1039/P19960002479

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements